To the lottery ticket hypothesis
and beyond

Can we really make training efficient?

Atelier DSAIDIS optimisation et réseaux de neurones

TELECOM Enzo Tartaglione

Paris

Maitre de Conférences, équipe MM, dept.IDS, LTCI
Hi!PARIS chair holder

enzo.tartaglione@telecom-paris.fr




Outline

* Pruning 101
* The lottery ticket hypothesis
* Beyond the lottery ticket hypothesis: the rise of the lottery heroes

* Real gain at computation time: neurons at equilibrium

* Conclusion




Recent trends in ANNSs

90%

85%

Top-1 Accuracy
ae)
=
=

75%

® Handcrafted ® Efficient Handcrafted

NAS ® HW-NAS

ViTERi 4
SM  80M 200M >400M FinETﬁci&nw
MoisyStudant
ViT-LA6
K.Cfar.

Number of parameters AdvE oD

. BIT-M
AmZabeHaI-A EfGentNet-B7
FixPMNASNal-5
NIRRT MASMET-A  EMASMai-5
goFA
Inception W3 DFM-131-M
ResMet1 030 .'
ResMet-152 ECA-MNeat
Reshel-50 Densenet-264 Mnaspjet-A3 REp¥ylessnas
. MNASMET-B
fMnashet-A2
WEE-10 Densenol-169 & il
. 'Inccptln-n V2 ® MrasNat-A1Epy o MobileNet V3
VGEG-16 L ] ;
ShulflaMel MaobileMeat W2

| ]

1 1
2016 2017 2019 2020

Year



Frugality in Al
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Frugality in Al

* Perform training with little data
— Better optimizers
— New loss functions
— Ease the features extraction with priors
— Transfer learning

* Use the trained Al models with little computational resources
— Pruning & Quantization
— Knowledge distillation
— Neural Architecture Search

* Train with little computational resources
— Ensure fast convergence for models
— Reduce the training cost




Pruning in deep learning: why?

* Reducing the storage memory (for a compressed model).
* Reducing the memory footprint.

* Reducing the FLOPs at inference time.

* Reducing energy consumption?

* Enhancing generalization?

Countless approaches to achieve sparse models...




How to prune a deep model?
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Pruning 101

Train

Prune

Regularize

Parameters are randomy initialized

Parameters are updated then trained with standard gradient descent until
performance is achieved (training stage)

Parameters below threshold T are removed, pruning connections
(parameter sparsification)

Neurons without input arcs input are pruned from the network (neuron
sparsification) ->Degrades network performance

Fine-tune the model, recovering the performance and iteratively prune

again.




Pruning 101
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The elephant in the room

* Objective: reach the highest sparsity with no
task-related performance degradation.

* The most effective approaches are also the
ones more computationally intensive

— multiple trainings are required for training
one sparse model.

— One-shot (or few-shot) pruning approaches
are in general worse.

* New challenge: achieve sparsity with less
computation at training time.




The lottery ticket hypothesis

“A randomly-initialized, dense neural network contains a sub-network that is initialized such
that, when trained in isolation, it can match the test accuracy of the original network after
training for at most the same number of iterations.” [Frankle and Carbin, 2019]

* The sub-network exists already at initialization: if it can be found, a lot of computation can
be saved.

— Computation for training the model (less parameters to train)

— Computation for pruning (no iterative pruning anymore, just pruning at initialization,
“zero-shot” pruning)
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How to identify the lottery winners?
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How to identify the lottery winners7
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Q Q ‘ obtained training the model
with less parameters.
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What we would like!
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Q with less parameters.
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How to identify the lottery winners efficiently?

* The original work provides evidence of the existence of the willing tickets, not proposing the
efficient algorithm...

— A model is trained, and depending on the magnitude/variation of the parameters,
pruned.

— The model is rewound to the initial state, but with less parameters, and train/pruning is
again repeated...

* Still a lot of research on making the search of the winning ticket efficient is needed!




Lottery winners at initialization?

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Finding these subnetworks before or early in the train can reduce the training cost.

Unfortunately this is an hard task:

1. Training a sparse network leads to subpar results [Evci et al., 2019]
Early tickets are unstable [Frankle et al., 2020]

2.
3. Theresultis similar to magnitude pruning applied at the end of the training [Frankle et al., 2021]
4. If rewinding techniques are used, it can require more computation than just train the original model



Lottery winners at initialization?

* (Case study: ResNet-32 trained on CIFAR-10

Full training

0 -
— SGD with momentum 0.9 - 10°
— Batch size 100 ;-102
— Initial learning rate: 0.1, decayed by factor 10 at ;-101
epochs 80 and 120 ) -
S g 10°
* We visualize the eigenvalues of the hessian forthe & -
full training set (50k images), computed using the £ 107
PyHessian library. ~ o
;—10—3
* Very complex loss landscape with high Ir, which tends _O

to be more and more “convex” as the Ir decreases.
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Lottery winners at initialization? (ll)

Reference

*  We compare the first 20 epochs with unrolling at many
pruning rates.

* The landscape changes dramatically, and training can not
match good performance!
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Why is it so hard?

Let W* be the initialization of a model. [ L

We want to prune a subset of its parameters
(namely, W ).

This means that a subset YV of parameters
survives, and that we project in the blue hyper-
plane.

E. Tartaglione, "The Rise of the Lottery Heroes: Why Zero-Shot Pruning is Hard," 2022 IEEE International Conference on Image Processing (ICIP), 2022, pp. 2
361-2365, doi: 10.1109/ICIP46576.2022.9897223.
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Why is it so hard? (Il)

We project in the subspace, finding the —~—
: : k
configuration Wror. .
Wk w

LorT

* When we project to a subspace, the loss
landscape can change drastically!

* We need to perform the optimization in
the blue subspace only!

3l
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Why is it so hard? (lll)

Despite an optimization path, leading to a
comparable loss as meight exist, it can be
very difficult to find.

Empirically, it becomes more and more
difficult to find as we prune more and more
parameters.

In a few-shot (or even zero-shot) scenario, it
becomes extremely difficult to find the
winning tickets!

E. Tartaglione, "The Rise of the Lottery Heroes: Why Zero-Shot Pruning is Hard," 2022 IEEE International Conference on Image Processing (ICIP), 2022, pp. 2
361-2365, doi: 10.1109/ICIP46576.2022.9897223.
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The rise of the lottery heroes

What if we do NOT project (hence, no

X
perturbation in the loss landscape at ﬂ&\o‘@u I
initialization due to the pruning)? o

e Wy

»

Instead of setting the parameters to zero, we
simply do not update them all along the :
training! Lror

Hence, we constrain the optimization problem
in the orange subspace.
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Are we pruning here?
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Are we pruning here?

We move from pruning parameters to pruning the update of parameters.
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Are we pruning here?

We move from pruning parameters to pruning the update of parameters.

Lottery ticket hypothesis:

finding a sub-network which, when trained in
isolation, matches the performance of the full
model. Very tiny networks can be found at
considerable computational effort with
iterative pruning + rewinding.
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Are we pruning here?

We move from pruning parameters to pruning the update of parameters.

Lottery ticket hypothesis:

finding a sub-network which, when trained in
isolation, matches the performance of the ful
model. Very tiny networks can be found at H
considerable computational effort with

iterative pruning + rewinding.

Rise of the lottery heroes:

finding a sub-network which needs to be
updated to match the performance of the
full model. Significant computational
complexity can be saved in zero-shot
scenarios (during the original training!)
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Experiments

ResNet-32 trained on CIFAR-10
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Experiments (1)

Accuracy [%]

E. Tartaglione, “The Rise of the Lottery Heroes: Why Zero-Shot Pruning is Hard," 2022 |IEEE International Conference on Image Processing (ICIP), 2022, pp. 2

MobileNet-v3 small trained on CIFAR-10
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Experiments (l11)

ResNet-18 trained on ILSVRC'12
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Interlude

* Zero-shot pruning is very hard: the pruning operation projects and constraints the optimization in sub-
spaces with (potentially) very different loss landscape from the one at initialization.

* A much more promising direction is to “prune” the back-propagation graph, finding a small subset of
parameters which need to be updated to reach the baseline performance.

* Atrade-off between the complexity deployed for training VS final performance is empirically
observed!

* In this work, even though pruning after one training only, we use some information (virtually)
inaccessible before training...

* Now comes the challenge to really gain: how do we know what to prune?
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* How to evaluate the dynamics?
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*  We identify neurons whose output does
not change on the validation set.
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* Interestingly we observe that, in phases 1.0 -
where the learning rate is very high (eg. 0.5 W
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Experiments
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o ..
Dataset Model Approach Bprop. FLOPs per iteration Performance
Baseline 138.94M + 0.0M 92.85% + 0.23%"
. — _ ~ T .
Stochastic (p = 0.2)  112.99M + 0.00M (-18.68%)  92.78% = 0.19% (-0.07%) Evaluated on different
CIFAR-10  ResNet-32  Stochastic (p = 0.5)  69.75M + 0.00M (-49.8%)  91.88% = 0.27% (-0.97%)' i ..
_ architecture, tasks and training
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(b) ResNet-32 trained with Adam.
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What about the size of the validation set? 'iy

(a) Ablation on ||=4a1]o.

|Z2vatl|lec  Bprop. FLOPs per iteration Accuracy
500 84.73M * 629.15K 92.70 £ 0.12
250 82.62M x 613.14K 92.80 £ 0.43
100 84.82M = 628.05K 92.81 £ 0.15
50 84.81M = 629.12K 92.96 + 0.21
25 84.49M x 629.37K 92.62 + 0.28
10 84.91M x 627.11K 92.70 £ 0.27
3 84.34M * 619.37K 92.57 £+ 0.48
2 85.76M = 617.11K 92.80 £ 0.24
1 85.56M = 626.09K 9277 £0.23
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What are the current challenges?

e Pruning in order to push the REAL ADVANTAGE on the final device (hence, structured
sparsity).

« Alternatively, Knowledge Distillation/NAS approaches can achieve very tiny models... but at
which training cost?

e Currently, iterative algorithms achieve better results in terms of accuracy/compression than
few-shot pruning... but at higher training cost.

o Alot of research is being done on pruning at initialization right now (towards saving of
computation at training time)... some suggested to do so in transfer learning scenarios!

e The new learning approach is more oriented towards fine-tuning + pruning, starting from pre-
trained models. New paradigms involve pruning from pre-trained architectures.
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