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Optimization problem

min
x∈Rp

Eξ∼D[f (x , ξ)]

• F (x) = Eξ∼D[f (x , ξ)]

• We look for x∗ ∈ arg minx∈Rp F (x), or at least a local
minimizer

• Distribution D is unknown but we can generate samples
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Example: Multilayer perceptron on MNIST

• D is the uniform distribution over N = 10, 000 images of
digits, together with their label

• For sample ξ = (I , y) and model parameters θ,
f (θ, (I , y)) = `(MLP(I , θ), y)

. ` is the categorical cross entropy
`(ŷ , y) = −

∑9
d=0 1yd=1 log(ŷd)

. MLP with 2 layers of 32 neurons with relu activation
followed by a 10-neuron layer with soft-max activation
→ p = 26, 506 parameters

• Objective: minθ∈Rp

∑N
i=1 f (θ, ξi)
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Stochastic gradient I

Setup
minx∈Rp Eξ∼D[f (x , ξ)]

Idea
For x ∈ Rp, ξ ∼ D, ∇f (x , ξ) is an unbiased estimator of ∇F (x)

Algorithm
x0 ∈ Rp

For k ≥ 0:
ξk+1 ∼ D
xk+1 = xk − αk∇f (xk , ξk+1)
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Stochastic gradient II
xk+1 = xk − αk∇f (xk , ξk+1)

Convergence speed
If F is convex with bounded stochastic gradients & αk = a√

k+b
:

E
[
F (x̄αk )−F (x∗)

]
≤ E[‖x0 − x∗‖2] + G

∑k
l=0 α

2
l

2
∑k

l=0 αl

∈ O
( ln(k)√

k

)
Advantages
• 1 sample per iteration
• Good result with only one pass over the data
• Speed of convergence independent from N

Drawbacks
• Limited precision for k > N
• The choice of the sequence αk is problem-dependent

5/16



Presentation of ADAM
ADAM: stochastic gradient with adaptive moment estimation
[Kingma and Ba, 2015] – 124,000 citations
xp0 ∈ Rp,m0 = 0 ∈ Rp, v0 = v̂0 = 0 ∈ Rp

+

mk+1 = β1mk + (1− β1)∇f (xk , ξk+1)

m̂k+1 =
mk+1

1− βk+1
1

vk+1 = β2vk + (1− β2)∇f (xk , ξk+1)2

v̂k+1 = max
(
v̂k ,

vk+1

1− βk+1
2

)
xk+1 = xk −

αk

ε +
√
v̂k+1︸ ︷︷ ︸

adaptive
learning rate

m̂k+1
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A few insights

• αk

ε +
√

v̂k+1

Adaptive step size that depends:

- on the amplitude of the objective function
- and on the noise in the stochastic gradients

• αk has no unit
Easy to tune independently on the problem

• mk+1 vs ∇f (xk , ξk+1)
Less variance but E[mk+1 | xk ] 6= ∇F (xk)

• v̂k is a vector
Coordinate-dependent learning rate
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What if there is no noise?

• We choose β1 = β2 = 0 and we have ∇f (x , ξ) = ∇F (x)

• xk+1 = xk − αk
∇F (xk )

ε+|∇F (xk )|

• Far from the optimum, the norm of the gradient does not
influence the algorithm

• Good for quasi-convex landscapes
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Moment or momentum?

• Suppose β2 = 0 and ∇f (x , ξ) = ∇F (x) (no noise)

• mk+1 = β1mk + (1− β1)∇F (xk)

• xk+1 = xk−α/εmk+1 = xk−α/ε(1−β1)∇F (xk)−α/εβ1mk

= xk − α/ε(1− β1)∇F (xk)− β1(xk−1 − xk)

• We recognize the heavy ball method
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Convergence theorem
Suppose that
• f (·, ξ) is convex for all ξ (local behaviour)
• ∃x∗ ∈ arg minF , F (x) = E[f (x , ξ)]
• For all k , for all i , |xk,i − x∗i | ≤ D
• For all x , ξ, for all i , |∇i f (x , ξ)| ≤ G
• αk = α0√

k+1

• β2
1 < β2 < 1

Then the iterates of Adam satisfy

E[F (x̄K )− F (x∗)]

≤ dD2

2(1− β1)

√
1− β2G

α0(
√
K + K )

+
1 + 2β1

2(1− β1)

α0

√
1 + ln(K )G

√
1− β2

√
1− β2

1

β2

√
K

where x̄K = 1
K

∑K−1
k=0 xk
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Sketch of proof 1
We will denote γ̂k+1 = αk

(1−βk+1
1 )(ε+

√
v̂k+1)

so that

xk+1 = xk − γ̂k+1mk+1.

• f (xk , ξk+1)− f (x∗, ξk+1) ≤ 〈∇f (xk , ξk+1), xk − x∗〉

• Using the relation mk+1 = β1mk + (1− β1)∇f (xk , ξk+1), we
get

〈∇f (xk , ξk+1), xk − x∗〉 = 〈mk+1, xk − x∗〉+
β1

1− β1

(
〈mk+1, xk+1 − x∗〉

−〈mk , xk − x∗〉
)

+
β1

1− β1
‖mk+1‖2γ̂k+1

• We make appear nearly telescoping terms in the first term

〈mk+1, xk−x∗〉 =
1

2
‖xk−x∗‖2γ̂−1

k+1

−1

2
‖xk+1−x∗‖2γ̂−1

k+1

+
1

2
‖mk+1‖2γ̂k+1
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Sketch of proof 2

• We can now sum

K−1∑
k=0

f (xk , ξk+1)− f (x∗, ξk+1)

≤ β1
1− β1

(
〈mK , xK − x∗〉 − 〈m0, x0 − x∗〉

)
+

K−1∑
k=0

(1

2
‖xk − x∗‖2

γ̂−1
k+1

− 1

2
‖xk+1 − x∗‖2

γ̂−1
k+1

)
+
( β1

1− β1
+

1

2

) K−1∑
k=0

‖mk+1‖2γ̂k+1

• The main term is
∑K−1

k=0 ‖mk+1‖2γ̂k+1
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Sketch of proof 3
The step size almost surely compensates the error term

• Denote gk+1 = ∇i f (xk , ξk+1) and γk+1 = αk
(1−β1)

√
vk+1
≥ γ̂k+1

(mk,i )
2γ̂k,i ≤ (mk,i )

2γk,i

=
αk−1

(1− β1)

(
(1− β1)

∑k
j=1 β

k−j
1 gj

)2
√

(1− β2)
∑k

j=1 β
k−j
2 g2

j

=
αk−1(1− β1)√

1− β2

(∑k
j=1

(
β

k−j
4

2 |gj |
1
2

)(
β1β

1/2
2

) k−j
2
(
βk−j1 |gj |

) 1
2

)2
√∑k

j=1 β
k−j
2 g2

j

≤ αk−1(1− β1)√
1− β2

( k∑
j=1

(β2
1
β2

)k−j) 1
2
( k∑

j=1

βk−j1 |gj |
)

≤ αk−1(1− β1)
√

1− β2
√

1− β2
1
β2

k∑
j=1

βk−j1 |gj |
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Sketch of proof 5

• By remarking that
∑K−1

k=j αkβ
k−j
1 ≤ αj

1−β1 , we get

K−1∑
k=0

(mk+1,i )
2γ̂k,i ≤

1
√

1− β2
√

1− β2
1
β2

K−1∑
k=0

αk |∇i f (xk , ξk+1)|

≤
α0

√
1 + ln(K )

√
1− β2

√
1− β2

1
β2

√√√√K−1∑
k=0

(∇i f (xk , ξk+1))2

≤
α0

√
1 + ln(K )

√
1− β2

√
1− β2

1
β2

G
√
K

• We only apply the expectation on ξk in the end:

E[F (x̄k)−F (x∗)] ≤ 1

K

K−1∑
k=0

E[f (xk , ξk+1)−f (x∗, ξk+1)] ∈ O(
lnK√
K

)
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Numerical illustration on MNIST
Default Keras parameters
SGD: αk = 0.01
ADAM: αk = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−7

1 epoch = 10,000 samples = 10 seconds 15/16



Conclusion

• Adam = several improvements over SGD, that combine
well

• Tuning of learning rate is easier

• Behaviour on convex as well as non convex problems is
good
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