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Problem setting and contributions

Supervised graph prediction.

x
f* = ?

(xi, f*(xi))N
i= 1Data set:

Main contributions in this work.
• We propose a novel model for graph prediction with two different training
strategies: kernel method or neural network.

• We provide theoretical guarantees in the nonparametric case.
• We assess the method on two problems: a synthetic and a real-world graph
prediction problem.
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A real-world graph prediction problem

The metabolite identification problem. The goal is to identify a molecule y from
a mass spectrum x.

Dataset. Couples (xi, yi)Ni=1 are available with typically N ∼ 103.

x
z

Molecules are well-represented as graphs where the atoms are nodes and the
chemical bonds are edges. Current SOTA methods obtain modest accuracies, and still
have difficulty in predicting novel molecules (Stravs et al., 2021).
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I. Supervised graph prediction

5 / 22



Statistical learning problem

Supervised graph prediction. For a given loss∆ : Y × Y → R+. Given a finite
sample (xi, yi)Ni=1 independently drawn from an unknown distribution ρ on X × Y ,
we aim at estimating the target function f∗ : X → Y minimizing the expected risk:

R∆(f) = Eρ[∆(f(X), Y)]. (1)

Empirical risk minimization. An estimate f̂ of f∗ can be obtained by minimizing
the empirical risk:

R̂∆(f) =
1

N

N∑
i=1

∆(f(xi), yi), (2)

over a chosen hypothesis space G of function f : X → Y .
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Challenges of supervised graph prediction

Challenges.

• 1) Modelling. How to define a relevant interpolant map from the data sets
(xi, yi)ni=1? This is tied to finding a proper way of computing weighted averages of
outputs.

• 2) Computation. Because of 1), one ends up with complex models (non-smoothly
parameterized models, and costly inference computations), such that solving
empirical risk minimization, e.g. via gradient descent, is very difficult.

Overview of the state-of-the-art for graph prediction.

• Using standard structured prediction approaches combined with expert-derived
graph representations (Brouard et al., 2016).

• Generative neural networks building graph sequentially (Liao et al., 2020) for
unsupervised graph prediction.
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II. FGW: a distance between graphs from
optimal transport
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Graphs as metric measure spaces

Feature space. Each node of a graph have a label represented as a vector inRd.

F ⊂ Rd with |F| < ∞ (3)

Output space: discrete graph space.

Y =
{
(C, F, h) | n ≤ nmax, C ∈ {0, 1}n×n, CT = C, F = (Fi)

n
i=1 ∈ Fn, h =

1

n
1n

}
(4)

Prediction space: continuous relaxed graph space.

Zn =
{
(C, F, h) | C ∈ [0, 1]n×n, CT = C, F ∈ Conv(F)n, h =

1

n
1n

}
(5)
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Fused Gromov-Wasserstein distance
(FGW)

The FGW distance (Vayer et al., 2020) is an extension of the GW distance, which can be
used to measure the similarity between attributed graphs.

The FGW distance. β ∈ [0, 1], z1 = (C1, F1) and z2 = (C2, F2):

FGW2
2(z1, z2) = min

π∈Pn1,n2

∑
i,k,j,l

[
(1− β)∥F1(i)− F2(j)∥2Rd

+ β(C1(i, k)− C2(j, l))
2
]
πi,jπk,l.

Two graphs are closed if there exists a transport plan matching their nodes and which
preserves the labels and the the pairwise similarities between the nodes.
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III. Proposed method
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Proposed method

I) FGW as a loss function. We propose to estimate a minimizer f : X → Zn of

Rn
FGW(f) = Eρ[FGW

2
2(f(x), y)] (6)

for a given n ∈ N∗.

Remark. When n is big enough Y ⊂ Zn
1.

II) Proposed FGW barycentric model. Given M template graphs z̄j ∈ Z

fθ(x) = argmin
z∈Zn

M∑
j=1

αj(x;W)FGW
2
2(z, z̄j), (7)

where the weights αi(x;W) : X → R+ are similarity scores between x and xj.
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Properties of the proposed model

Remarks.

• The model’s parameters are θ = (W, (̄zj)Mj=1).

• The model is invariant under isomorphism.

• In terms of computations, it leverages the advances in computational optimal
transport (Peyré et al., 2016, Vayer et al., 2019).
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Two fitting strategies

A) Kernel method. Given a p. d. kernel k : X × X → R, M = N and z̄j = zj

α(x) = (K+ λIN)
−1kx (8)

with K = (k(xi, xj))ij ∈ RN×N and kTx = (k(x, x1), . . . , k(x, xN)).

Remark. This closed-form estimation is rooted in IOKR (Brouard et al., 2016) and
ILE (Ciliberto et al., 2020) frameworks.

B) Neural network.

• α : X → RM is a neural network.

• α and the template graphs (̄zj)Mj=1 are learned using stochastic gradient descent.

• We propose a method to compute a sub-gradient of the loss FGW(fθ(xi), yi).
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Theoretical guarantees
Under technical assumptions, the two following guarantees hold for the kernel-based
estimator.

Consistency. With probability 1,

lim
N→+∞

Rn
FGW(̂f) = Rn

FGW(f
∗). (9)

Excess-risk bound. With probability 1− δ,

Rn
FGW(̂f)−Rn

FGW(f
∗) ≤ c log(4/δ)N−1/4, (10)

with c a constant independent of N and δ.
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IV. Experiments
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Synthetic experiment with neural network
True map. We defined a smooth map f∗ : [0, 6] → Y which maps x to a stochastic
block model with x blocks.

Learned map. We trained the neural network model with 8 templates using 100
i.i.d couples (xi, yi)100i=1 . We obtained the following estimated map f̂ : [0, 6] → Y .

17 / 22



Synthetic experiment with neural network

Learned map visualization.

Figure 1: Learned templates (̄zj)mj=1 on the synthetic dataset and trajectory of the weights α(x)
on the simplex as a function of x.
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Metabolite identification problem 1/2
Experimental setting. We compare the FGW metric to other graph metrics by
changing the metric D in the following model

argmin
y∈Y

N∑
j=1

αj(x;W)D(y, yj) (11)

When D is FGW we recover the proposed method. When D is a kernel we recover the
IOKR method for structured prediction.

Obtained results.
• Gaussian fingerprints is state-of-the-arts on this dataset when a candidate set is
available.

• FGW greatly benefits from the improved fine and diffuse metrics showing the
adaptation potential of the FGW metric to the graph space at hand reaching
competitive performance against Fingerprints with linear kernel and beating WL
kernels. The method proposed in this work is the first generic approach that
obtained good Top-k accuracies without using these expert-derived molecular
graph representations.
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Table of Top-k accuracies

Top-1 Top-10 Top-20

WL kernel 9.8% 29.1% 37.4%

Linear fingerprint 28.6% 54.5% 59.9%

Gaussian fingeprint 41.0% 62.0% 67.8%

FGW one-hot 12.7% 37.3% 44.2%

FGW fine 18.1% 46.3% 53.7%

FGW diffuse 27.8% 52.8% 59.6%

Table 1: Top-k accuracies for various graph kernels on the metabolite identification dataset.
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Comparison with not expert-derived graph
representations

Setting 2. In order to define a molecular graph metric, we use the deep generative
graph representations from MoFlow (Zang et al, 2020) learned from 249.455
molecules and which obtained state-of-the-art results in (unsupervised) molecular
graph generation.

Obtained results. FGW diffuse exhibits far better performance than the MoFlow
graph distance.

Top-1 Top-10 Top-20

Gaussian fingerprint 46.2% 77.8% 84.9%

FGW diffuse 40.3% 69.7% 78.3%

MoFlow representat. 20.0% 58.2% 68.4%

Table 2: Top-k accuracies obtained using deep molecular graph representations in comparison
to the proposed FGW metric, and expert-derived fingerprint representations.
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