Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection

Dimitri Bouche¹ Rémi Flamary⁴ Florence d'Alché-Buc¹ Riwal Plougonven³ Marianne Clausel² Jordi Badosa³ Philippe Drobinski³ ¹ LTCI, Télécom Paris, IP Paris, ² Université de Lorraine, CNRS, IECL ³ LMD-IPSL, Ecole polytechnique, IP Paris, ENS-PSL Université ⁴ CMAP, Ecole Polytechnique, IP Paris

Objective: predict the wind speed (ultimately wind power)...

- locally (at a wind farm location)
- in the short term (up to few hours ahead)
- at high temporal resolution (every 10 min)

Challenges

- Numerical weather prediction models (NWPM) at desired time/space resolution: too costly
- Statistical methods using only past local information: costly if complex (deep) models are used (one model per site)

Downscaling : combine using statistical learning...

- NWPM's outputs (low resolution but readily available)
- Past local data collected by turbines' sensors.

Rationale

 NWPM: valuable information for the evolution of the atmosphere on larger scale

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Past local data: site specific information

Two main approaches for wind power prediction:

Direct approach: Model predicts directly local wind power

Indirect approach:

- **1** Model predicts the local wind speed
- 2 Predictions are passed through an estimated or a theoretical power curve.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Overview

In the context of downscaling with statistical learning

Variable selection

many available variables from NWPM and several local variables

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

- Linear or nonlinear dynamics ?
- Essential variables ?

Which methods perform well ?

- Linear vs nonlinear ?
- Simplest method ?

Indirect or direct prediction ?

Wind farms data from Zéphyr ENR's [Dupré et al., 2020]:

- 6 wind farms (we study 5 of those: BM, BO, MP, RE, VE)
- Between 2 and 3 years of historical data
- 10 min resolution
- Between 3 and 6 wind turbines

NWPM outputs from the European Centre for Medium-Range Weather Forecasts (ECMWF)

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

- Spatial resolution: 16km × 16km
- Time resolution: 1h

Wind farms locations

Figure: Cartography of the studied farms, BM (A), BO (B), MP (C), RE (D), VE (E)

Prediction scheme

Figure: Downscaling prediction scheme

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Prediction scheme (2)

Input space

- $\mathcal{X} = \mathbb{R}^q$ for some $q \in \mathbb{N}$
- q depends on chosen variables and time windows

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Training data

- $(\mathsf{x}_t,\mathsf{y}_{t+1:m})_{t=1}^n \in (\mathcal{X} \times \mathbb{R}^m)^n$ for some $n \in \mathbb{N}$,
- with $y_{t+1:m} := (y_{t+1+m_0})_{m_0=1}^m$.

Learning problem

Consider

- \blacksquare A model $\mathit{f}_w: \mathcal{X} \to \mathcal{Y}$ parametrized by parameters $w \in \mathcal{W}$
- A regularization function $\Omega: \mathcal{W} \longrightarrow \mathbb{R}$

Generic learning problem

$$\min_{\mathsf{w}\in\mathcal{W}}\frac{1}{n}\sum_{t=1}^{n}\|f_{\mathsf{w}}(\mathsf{x}_{t})-\mathsf{y}_{t+1:m}\|_{2}^{2}+\lambda\Omega(\mathsf{w}).$$

What do we put in x_t ?

- Variable selection: which variables ?
- Temporal selection: how much past (or future) information ?

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Which dependencies can be detected ?

- Linear: account only for linear dependencies only
- Nonlinear: account for a rich variety of dependencies

We consider two techniques

- A greedy forward approach (add the variables one by one)
- The LASSO [Tibshirani, 1996] (sparsity-promoting penalty)

LASSO problem

$$\min_{\mathbf{w}\in\mathcal{W},b\in\mathbb{R}}\frac{1}{n}\sum_{t=1}^{n}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{t}+b-y_{t+1+m})^{2}+\lambda\|\mathbf{w}\|_{1},$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LASSO selection (WS)

Figure: LASSO selection: Wind speed as target variable

LASSO selection (PW)

Figure: LASSO selection: Wind power as target variable

HSIC

Backward selection using HSIC (BAHSIC) [Song et al., 2012]

Consider

- An input p. d. kernel $k : \mathcal{X}^2 \longrightarrow \mathbb{R}$
- An output p. d. kernel $g:(\mathbb{R}^m)^2\longrightarrow\mathbb{R}$

HSIC estimator [Gretton et al., 2008]

$$\widehat{\mathsf{HSIC}} := \frac{1}{n^2} \mathsf{Trace}(\mathsf{HKHG}),$$

With

- $H := \frac{1}{n}(I \mathbf{1}\mathbf{1}^{\mathsf{T}})$ the centering matrix
- $K \in \mathbb{R}^{n \times n}$ and $G \in \mathbb{R}^{n \times n}$ the kernel matrices

Nyström HSIC

Nyström approximation [Drineas and Mahoney W., 2005]

- Random indices $\{i_1, ..., i_p\}$ and $\{i'_1, ..., i'_{p'}\}$ from $\llbracket n \rrbracket$.
- K_{np} , K_{pp} , $G_{np'}$, $G_{p'p'}$ corresponding sub kernel matrices

Centered Nyström features

$$\widehat{\Phi} := HK_{np}K_{pp}^{-\frac{1}{2}},$$
$$\widehat{\Psi} := HG_{np'}G_{p'p'}^{-\frac{1}{2}},$$

Nyström HSIC estimator [Zhang et al., 2018]

$$\widetilde{\mathsf{HSIC}} := \|\frac{1}{n}\widehat{\Phi}^\mathsf{T}\widehat{\Psi}\|_F^2 \; .$$

HSIC importance evolution (WS)

Figure: HSIC selection: Wind speed as target variable

HSIC importance evolution (PW)

Figure: HSIC selection: Wind power as target variable

Benchmarks

- LASSO (linear, built in variable selection)
- OLS f-stepwise: Forward stepwise OLS (linear, greedy variable selection)
- Nyström KRR: Kernel ridge regression with Nyström approximation (nonlinear, variable selection through BAHSIC)

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

- **XgBoost** (nonlinear, variable selection through BAHSIC)
- Feedforward deep neural network (nonlinear, variable selection through BAHSIC)
- Persistence
- ECMWF

Overall performance (WS)

Figure: NRMSE evolution for best performing methods, WS as target

Example of estimated power curve

Figure: Estimated power curve for BO

Overall performance (PW)

Figure: NRMSE evolution for best performing methods, PW as target

Quantitative comparison (WS)

Method (average rank)	BM	BO	MP	RE	VE
LASSO (1.6)	1.14	0.13	0.17	0.14	0.15
Nyström KRR (2.0)	1.07	0.36	0.07	0.19	0.21
OLS f-stepwise (2.4)	1.12	0.16	0.48	0.17	0.34
Feedforward NN (4.4)	1.54	0.87	0.61	1.18	1.34
XG-Boost (4.6)	1.83	1.25	1.64	0.73	0.97
ECMWF (6.4)	7.83	3.63	3.76	6.65	11.37
Persistence (6.6)	5.61	6.72	7.03	6.7	4.5

Table: Average NRMSE degradation w.r.t. best predictor for wind speed prediction ($\times 10^{-2})$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Quantitative comparison (PW)

Туре	Method (average rank)	BM	BO	MP	RE	VE
Direct	Nyström KRR (2.2)	3.93	1.16	0.63	0.36	0.69
Indirect	Nyström KRR (2.8)	3.46	1.15	0.55	2.88	1.2
Indirect	LASSO (3.0)	3.96	0.77	1.08	2.62	0.86
Indirect	OLS f-stepwise (4.0)	3.62	0.83	1.53	3.32	1.61
Direct	XG-Boost (4.4)	4.54	2.36	1.5	1.7	1.8
Direct	OLS f-stepwise (5.6)	4.07	2.98	3.56	2.33	3.0
Direct	LASSO (6.0)	4.83	3.12	3.46	2.44	2.45
Direct	Persistence (8.8)	12.0	15.45	14.91	14.16	9.88
Direct	Feedforward NN (9.6)	25.06	7.8	5.09	20.62	18.67
Indirect	Persistence (9.8)	13.13	15.86	15.22	16.29	10.85
Indirect	ECMWF (9.8)	18.85	8.63	8.02	19.64	28.53

Table: Average NRMSE degradation w.r.t. best predictor for wind power prediction ($\times 10^{-2})$

Thank you !

Paper available on Arxiv:

D. Bouche, R. Flamary, F. d'Alché Buc, R. Plougonven,

M. Clausel, J. Badosa, and P. Drobinski. Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection, 2022.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

https://arxiv.org/abs/2204.09362

Selected bibliography I

- D. Bouche, R. Flamary, F. d'Alché Buc, R. Plougonven, M. Clausel, J. Badosa, and P. Drobinski. Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection, 2022. https://arxiv.org/abs/2204.09362.
- P. Drineas and M. Mahoney W. On the nystrom method for approximating a gram matrix for improved kernel-based learning. *Journal of Machine Learning Research*, 6:2153–2175, 2005.
- A. Dupré, P. Drobinski, B. Alonzo, J. Badosa, C. Briard, and R. Plougonven. Sub-hourly forecasting of wind speed and wind energy. *Renewable Energy*, 145:2373–2379, 2020.
- A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. In *Advances in Neural Information Processing Systems*, volume 20, 2008.

- L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature selection via dependence maximization. *Journal of Machine Learning Research*, 13:1393–1434, 2012.
- R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.
- Q. Zhang, S. Filippi, A. Gretton, and D. Sejdinovic. Large-scale kernel methods for independence testing. *Statistics and Computing*, 28, 1 2018.

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>