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Short term and local wind forecasting

Objective: predict the wind speed (ultimately wind power)...
m locally (at a wind farm location)
m in the short term (up to few hours ahead)

m at high temporal resolution (every 10 min)

Challenges

m Numerical weather prediction models (NWPM) at desired
time/space resolution: too costly

m Statistical methods using only past local information: costly
if complex (deep) models are used (one model per site)



Downscaling with statistical learning

Downscaling : combine using statistical learning...
m NWPM'’s outputs (low resolution but readily available)

m Past local data collected by turbines’ sensors.

Rationale

m NWPM: valuable information for the evolution of the
atmosphere on larger scale

m Past local data: site specific information



Wind power prediction: direct/indirect

Two main approaches for wind power prediction:

Direct approach: Model predicts directly local wind power

Indirect approach:
1 Model predicts the local wind speed

2 Predictions are passed through an estimated or a theoretical
power curve.



Overview

In the context of downscaling with statistical learning

Variable selection

m many available variables from NWPM and several local
variables

m Linear or nonlinear dynamics 7

m Essential variables ?

Which methods perform well ?
m Linear vs nonlinear ?

m Simplest method ?

Indirect or direct prediction ?



Dataset

Wind farms data from Zéphyr ENR's [Dupré et al., 2020]:
m 6 wind farms (we study 5 of those: BM, BO, MP, RE, VE)
m Between 2 and 3 years of historical data
m 10 min resolution

m Between 3 and 6 wind turbines

NWPM outputs from the European Centre for Medium-Range
Weather Forecasts (ECMWF)

m Spatial resolution: 16km x 16km
m Time resolution: 1h



Wind farms locations

Figure: Cartography of the studied farms, BM
(D), VE (E)

(A), BO (B), MP (C),




Prediction scheme
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Figure: Downscaling prediction scheme
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Prediction scheme (2)

Input space
m X =R for some g € N

m g depends on chosen variables and time windows

Training data
B (X¢,Ye+1:m)i—1 € (X x R™)" for some n € N,

B With Yei1m = (Ve 14mo)mp=1-



Learning problem

Consider
m A model f,, : X — ) parametrized by parameters w € W
m A regularization function Q: W — R

Generic learning problem

1y
i, 2 16) ezl + 200,



Variable selection

What do we put in x; ?
m Variable selection: which variables ?

m Temporal selection: how much past (or future) information ?

Which dependencies can be detected ?
m Linear: account only for linear dependencies only

m Nonlinear: account for a rich variety of dependencies



Linear variable selection

We consider two techniques
m A greedy forward approach (add the variables one by one)
m The LASSO [Tibshirani, 1996] (sparsity-promoting penalty)

LASSO problem

n

a 1 j : T 2
WEWIEE]R n (W *t yert ) HWHI’



LASSO selection (WS)

Lasso score
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Figure: LASSO selection: Wind speed as target variable




LASSO selection (PW)

Lasso score
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Figure: LASSO selection: Wind power as target variable




HSIC

Backward selection using HSIC (BAHSIC) [Song et al., 2012]

Consider
m An input p. d. kernel k: X2 — R
m An output p. d. kernel g : (R™)2 — R

HSIC estimator [Gretton et al., 2008]

—

HSIC := %Trace(HKHG),
n

With
m H:=1(/ —11T) the centering matrix
B K€ R™"and G € R™" the kernel matrices



Nystrom HSIC

Nystrom approximation [Drineas and Mahoney W., 2005]
m Random indices {i,...,jp} and {if,...,i;,} from [n].

m Kip, Kpp, Grpr, Gprpr corresponding sub kernel matrices

Centered Nystrom features

Nystrom HSIC estimator [Zhang et al., 2018]

. 1~ ~
HSIC := H;qﬂ\u”% :



HSIC importance evolution (WS)
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Figure: HSIC selection: Wind speed as target variable




HSIC importance evolution (PW)
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Figure: HSIC selection: Wind power as target variable




Benchmarks

m LASSO (linear, built in variable selection)

m OLS f-stepwise: Forward stepwise OLS (linear, greedy
variable selection)

m Nystrom KRR: Kernel ridge regression with Nystrom
approximation (nonlinear, variable selection through BAHSIC)

m XgBoost (nonlinear, variable selection through BAHSIC)

m Feedforward deep neural network (nonlinear, variable
selection through BAHSIC)

m Persistence
m ECMWF



Overall performance (WS)
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Figure: NRMSE evolution for best performing methods, WS as target
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Example of estimated power curve
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Figure: Estimated power curve for BO
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Overall performance (PW)
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Figure: NRMSE evolution for best performing methods, PW as target



Quantitative comparison (WS)

Method (average rank) | BM  BO MP RE VE
LASSO (1.6) 1.14 0.13 017 0.14 0.15
Nystrom KRR (2.0) 1.07 036 0.07 0.19 0.21
OLS f-stepwise (2.4) 112 016 048 0.17 034
Feedforward NN (4.4) 154 087 061 118 134

XG-Boost (4.6) 183 125 164 0.73 0.97
ECMWEF (6.4) 783 3.63 376 665 11.37
Persistence (6.6) 561 672 7.03 6.7 4.5

Table: Average NRMSE degradation w.r.t. best predictor for wind speed
prediction (x1072)



Quantitative comparison (PW)

Type Method (average rank) | BM BO MP RE VE
Direct Nystrom KRR (2.2) 393 116 0.63 036 0.69
Indirect Nystrom KRR (2.8) 3.46 1.15 0.55 2.88 1.2
Indirect LASSO (3.0) 3.96 0.77 1.08 2.62 0.86
Indirect OLS f-stepwise (4.0) 362 083 153 332 161
Direct XG-Boost (4.4) 454 236 15 1.7 1.8
Direct OLS f-stepwise (5.6) 407 298 356 233 3.0
Direct LASSO (6.0) 4.83 3.12 3.46 2.44 2.45
Direct Persistence (8.8) 120 1545 1491 1416 9.88
Direct Feedforward NN (9.6) 25.06 7.8 5.09 20.62 18.67
Indirect Persistence (9.8) 13.13 1586 15.22 16.29 10.85
Indirect ECMWEF (9.8) 18.85 8.63 8.02 19.64 28.53

Table: Average NRMSE degradation w.r.t. best predictor for wind power
prediction (x1072)



Questions ?

Thank you !
Paper available on Arxiv:

D. Bouche, R. Flamary, F. d'Alché Buc, R. Plougonven,

M. Clausel, J. Badosa, and P. Drobinski. Wind power predictions
from nowcasts to 4-hour forecasts: a learning approach with
variable selection, 2022.

https://arxiv.org/abs/2204.09362
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