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Geo-databases: information from location and value of the data

e data sets of spatial nature e unique realisation of the
= dependence structure: phenomenon: no independent
close data are more related repetitions of the random field

@ Different from usual statistical learning theory:

non independent observations
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Machine Learning: Spatial Analysis:
e Assets: statistical learning e Assets: take advantage of
theory for independent data, spatial structure (modelled by
nonparametric theory covariance function)
e Limits: no theoretical e Limits: very few nonparametric
guarantees for dependent data theories

e Limits: lack of nonasymptotic results
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Research Questions:

e how dependence structure of spatial data affects learning rates?

e how spatial data can be processed by ML techniques with
generalisation guarantees?
e connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study
of the performances of a (nonparametric) covariance estimator
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C(s, t) = Cov(Xs, X:) covariance function of X

X(sn) = (X, )1<i<n Observations of X at locations s, = (s;)1<i<n

¢n(s) = (Cov(Xs, Xs;) )1<i<n covariance vector

Z(sn) = Var(X(sn)) = (Cov(Xs;, Xs;))1<ij<n cOvariance matrix
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Solution: stationarity assumption — successful frequentist approach

e Assumption 1: X second order stationary and isotropic RF: constant
mean u and invariant covariance C (depends only on distance h):
dc, C(s, t) = c(||lt—sl|) = c(h)

— 4/ X is sufficiently homogeneous inside the spatial domain

e Assumption 2: X Gaussian RF with zero mean (Simple Kriging) and
positive definite covariance function
— / all the laws are known

e Assumption 3: infill asymptotic: number of observations within spatial
domain Sincreases (denser and denser grid) and regular grid
— / allows to control the spectrum of the covariance matrix
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Simple Kriging: predict the value of X at some unobserved location s,
based on n sampled observations (Xs,)i<n, assuming a linear combination
of the observations: f,(s) = (A(s), X(sn)).

e problem: find A* minimising e solution: weights A* depend
variance, s.t. no bias on covariance function and s:
o IMSE: Ls(f) = Ex [ J; ((s) — X;)* ds] far (s) = X(sn)Z(sn)"cn(s)

[—Kriging approximation
[m95% confidence intervall
o tions

Remark (Exact Interpolation):

e at observed points: exact
interpolator

e at unobserved points: linear

combination of data A5 = <
X 6/17
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theoretical kriging: empirical kriging:
covariance function known in practice,
—> X* BLUP covariance function unknown
(Best Linear Unbiased Predictor) = Xno guarantees of BLUP

& need to estimate covariance function

Plug-in predictive rules:

e covariance function estimator: c(h) = — ZXS‘XSJ where sum over
set N(h) of pairs at distance h and n, = |N(h)|

e construct an estimator A of A * by replacing the unknown quantities
by their estimators ¢,(s) and X(s,) (plug-in)

= need to establish rate bounds that assess the generalization capacity
of the resulting predictive map
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- based on independent observations (x;, yi)1<i<n = (input, output)
- minimise Mean Squared Error by Empirical Risk Minimisation

e ridge regression: penalty term = avoid overfitting

o kernel trick: transform data space = solve a non linear problem:

. 10 n
— i — e — . 2 — 2 . .
f—arg)[gg{Z ?:1 (vi— ()" + 2IIfIIf}, where (£, (-, ) ) RKHS

S ?(X) =t Y, (nln + %)_1 Kn(x)

Gram matrix « — kernel vector
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Main Results

Machine Learning: Geostatistics:

e goal: build complete map (prediction at

e goal: build predictor for
each unobserved location)

new unobserved data

e choice of kernel function e nonparametric covariance estimation

FO) =" Yo (0l + A7) ka(X) f5(s) =" X(50)Z(5,) e (5)

= kriging predictor same form as kernel ridge regressor:

e regularised Gram matrix «— covariance matrix

e kernel vector «<— covariance vector
9/17
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Main Results

What global gap between optimal theoretical predictor and
empirical predictor errors?

Concentration Inequality:
e predictor accuracy measured by MSE

e global excess risk quantify gap

= Goal: define nonasymptotic bound of global excess risk:

Ls(f3) — Ls (fA+) = Ex [/SES (f:(s) = fr+ (5))? ds]
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e Assumption 4: 3j; > 1, Vh > 1— 27, ¢(h) = 0 (border hypothesis)

— / allows to give an inferior bound on ny, the number of pairs at
distance h

e Assumption 5: 3 m, M < 00, eigenvalues of covariance matrix are
bounded

— / taken into account in the tail bounds of the estimators

e Assumption 6: c is of class 6" and its gradient is bounded by D
(regularity hypothesis)

— / taken into account when studying the estimation error of the
covariance function for all lags (smoothness of the covariance

function)
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Main Results

Theorem ( )
For any 6 € (0O, 1), we have with probability at least 1— &:

log(n/s)  2D?
Ls(fz) — Ls(fA+) £ Cs T ;
n n+1

as soon asn > Cg log(n/s), where C4 and Cg are nonnegative constants

depending on j;, m and M solely.
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What can we tell about the covariance matrix accuracy?

e under Hyp 2, fl(s,,) is symmetric and semi-positive definite

e Bochner’s theorem applies: bound deviation thanks to the connection
between covariance matrix and spectral density [Hall and Patil, 1994]

= nonasymptotic bound on accuracy of covariance matrix estimator
o (E(s) = =(s))
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v satisfies all the assumptions X not Hyp 4, but vanishes quickly

Remark: experiments corroborate our theoretical results
e both covariance models: for small values of j;, excess of risk is small
e bound depends on j; (role of technical assumptions is verified)

= results for Gaussian covariance encourages to relax Hyp 4
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e incremental way to proceed

e gradually relax some hypotheses:
- Assumption 4 (border hypothesis) less restrictive: c(h) \, O
- Assumption 6 (regularity hypothesis): other smoothing techniques
- Irregular grid: biased semi-variogram estimator, inferior bound on ny,

- Assumption 2: outside the Gaussian case

e partitioning methods (dyadic CART): divide spatial domain into
clusters where the process is locally stationary

16/17
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Conclusion

e novel theoretical framework offering guarantees for empirical simple
Kriging rules in the form of non-asymptotic bounds

e theoretical guarantees for dependent databases
= industrial assets and many possible applications

e possible extensions to a more general framework
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