

A Statistical Learning View of Simple Kriging

Emilia Siviero, Stephan Clémençon and Emilie Chautru June 15, 2022 LTCI, Télécom Paris, in collaboration with Geostatistics Team, Mines ParisTech

Introduction Geostatistical context

Geo-databases: information from location and value of the data

Introduction Geostatistical context

Geo-databases: information from location and value of the data

 data sets of spatial nature
⇒ dependence structure: close data are more related

Geostatistical context

Geo-databases: information from location and value of the data

 data sets of spatial nature
⇒ dependence structure: close data are more related

 unique realisation of the phenomenon: no independent repetitions of the random field

Introduction Geostatistical context

Geo-databases: information from location and value of the data

 data sets of spatial nature
⇒ dependence structure: close data are more related

 unique realisation of the phenomenon: no independent repetitions of the random field

Different from usual statistical learning theory: **non** independent observations

Motivations

Machine Learning:

Motivations

Machine Learning:

• Assets: statistical learning theory for independent data, nonparametric theory

Motivations

Machine Learning:

- Assets: statistical learning theory for independent data, nonparametric theory
- Limits: no theoretical guarantees for dependent data

Motivations

Machine Learning:

- Assets: statistical learning theory for independent data, nonparametric theory
- Limits: no theoretical guarantees for dependent data

Spatial Analysis:

• Assets: take advantage of spatial structure (modelled by covariance function)

Motivations

Machine Learning:

- Assets: statistical learning theory for independent data, nonparametric theory
- Limits: no theoretical guarantees for dependent data

- Assets: take advantage of spatial structure (modelled by covariance function)
- Limits: very few nonparametric theories

Motivations

Machine Learning:

- Assets: statistical learning theory for independent data, nonparametric theory
- Limits: no theoretical guarantees for dependent data

- Assets: take advantage of spatial structure (modelled by covariance function)
- Limits: very few nonparametric theories
- Limits: lack of nonasymptotic results

Objectives

Research Questions:

• how dependence structure of spatial data affects learning rates?

Research Questions:

- how dependence structure of spatial data affects learning rates?
- how spatial data can be processed by ML techniques with generalisation guarantees?

Research Questions:

- how dependence structure of spatial data affects learning rates?
- how spatial data can be processed by ML techniques with generalisation guarantees?
- connections between Simple Kriging and Kernel Ridge Regression?

Research Questions:

- how dependence structure of spatial data affects learning rates?
- how spatial data can be processed by ML techniques with generalisation guarantees?
- connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study of the performances of a (nonparametric) covariance estimator

1. Simple Kriging

2. Kernel Ridge Regression

• $S \subset \mathbb{R}^2$ spatial domain

- $S \subset \mathbb{R}^2$ spatial domain
- $X = \{X_s, s \in S\}$ second-order random field (RF)

- $S \subset \mathbb{R}^2$ spatial domain
- $X = \{X_s, s \in S\}$ second-order random field (RF)
- $C(s, t) = Cov(X_s, X_t)$ covariance function of X

- $S \subset \mathbb{R}^2$ spatial domain
- $X = \{X_s, s \in S\}$ second-order random field (RF)
- $C(s, t) = Cov(X_s, X_t)$ covariance function of X
- $X(s_n) = (X_{s_i})_{1 \le i \le n}$ observations of X at locations $s_n = (s_i)_{1 \le i \le n}$

- $S \subset \mathbb{R}^2$ spatial domain
- $X = \{X_s, s \in S\}$ second-order random field (RF)
- $C(s, t) = Cov(X_s, X_t)$ covariance function of X
- $X(s_n) = (X_{s_i})_{1 \le i \le n}$ observations of X at locations $s_n = (s_i)_{1 \le i \le n}$
- $\mathbf{c}_n(s) = (Cov(X_s, X_{s_i}))_{1 \le i \le n}$ covariance vector

- $S \subset \mathbb{R}^2$ spatial domain
- $X = \{X_s, s \in S\}$ second-order random field (RF)
- $C(s, t) = Cov(X_s, X_t)$ covariance function of X
- $X(s_n) = (X_{s_i})_{1 \le i \le n}$ observations of X at locations $s_n = (s_i)_{1 \le i \le n}$
- $\mathbf{c}_n(s) = (Cov(X_s, X_{s_i}))_{1 \le i \le n}$ covariance vector
- $\Sigma(\mathbf{s}_n) = Var(\mathbf{X}(\mathbf{s}_n)) = (Cov(X_{s_j}, X_{s_i}))_{1 \le i,j \le n}$ covariance matrix

Limitation: unique realisation with only finite number of observations

Limitation: unique realisation with only finite number of observations **Solution: stationarity** assumption \longrightarrow successful frequentist approach

Limitation: unique realisation with only finite number of observations Solution: stationarity assumption — successful frequentist approach

• Assumption 1: X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h): $\exists c, C(s, t) = c(||t - s||) = c(h)$

Limitation: unique realisation with only finite number of observations **Solution: stationarity** assumption \longrightarrow successful frequentist approach

• <u>Assumption 1:</u> X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h): $\exists c, C(s, t) = c(||t - s||) = c(h)$

 $\longrightarrow \sqrt{X}$ is sufficiently **homogeneous** inside the spatial domain

Limitation: unique realisation with only finite number of observations **Solution: stationarity** assumption \longrightarrow successful frequentist approach

• Assumption 1: X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h): $\exists c, C(s, t) = c(||t - s||) = c(h)$

 $\longrightarrow \sqrt{X}$ is sufficiently **homogeneous** inside the spatial domain

• Assumption 2: X Gaussian RF with zero mean (Simple Kriging) and positive definite covariance function

Limitation: unique realisation with only finite number of observations **Solution: stationarity** assumption \longrightarrow successful frequentist approach

• <u>Assumption 1:</u> X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h): $\exists c, C(s, t) = c(||t - s||) = c(h)$

 $\longrightarrow \sqrt{X}$ is sufficiently **homogeneous** inside the spatial domain

• <u>Assumption 2:</u> X Gaussian RF with zero mean (Simple Kriging) and positive definite covariance function

 $\longrightarrow \sqrt{}$ all the laws are known

Limitation: unique realisation with only finite number of observations Solution: stationarity assumption \longrightarrow successful frequentist approach

Assumption 1: X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h):
∃c, C(s, t) = c(||t - s||) = c(h)

 $\longrightarrow \sqrt{X}$ is sufficiently **homogeneous** inside the spatial domain

• <u>Assumption 2:</u> X Gaussian RF with zero mean (Simple Kriging) and positive definite covariance function

 $\longrightarrow \sqrt{}$ all the laws are known

• Assumption 3: infill asymptotic: number of observations within spatial domain S increases (denser and denser grid) and regular grid

Limitation: unique realisation with only finite number of observations **Solution: stationarity** assumption \longrightarrow successful frequentist approach

Assumption 1: X second order stationary and isotropic RF: constant mean μ and invariant covariance C (depends only on distance h):
∃c, C(s, t) = c(||t - s||) = c(h)

 $\longrightarrow \sqrt{X}$ is sufficiently **homogeneous** inside the spatial domain

• <u>Assumption 2:</u> X Gaussian RF with zero mean (Simple Kriging) and positive definite covariance function

 $\longrightarrow \sqrt{}$ all the laws are known

Assumption 3: infill asymptotic: number of observations within spatial domain S increases (denser and denser grid) and regular grid
 → √ allows to control the spectrum of the covariance matrix

Preliminaries Spatial Analysis

Simple Kriging: predict the value of X at some unobserved location s, based on n sampled observations $(X_{s_i})_{i \le n}$, assuming a linear combination of the observations: $f_{\lambda}(s) = \langle \lambda(s), X(s_n) \rangle$.

Simple Kriging: predict the value of X at some unobserved location s, based on *n* sampled observations $(X_{s_i})_{i \le n}$, assuming a linear combination of the observations: $f_{\lambda}(s) = \langle \lambda(s), X(s_n) \rangle$.

- <u>problem</u>: find λ* minimising variance, s.t. no bias
- IMSE: $L_S(f) = \mathbb{E}_X \left[\int_S (f(s) X_s)^2 ds \right]$

Simple Kriging: predict the value of X at some unobserved location s, based on n sampled observations $(X_{s_i})_{i \le n}$, assuming a linear combination of the observations: $f_{\lambda}(s) = \langle \lambda(s), \mathbf{X}(\mathbf{s}_n) \rangle$.

- <u>problem</u>: find λ* minimising variance, s.t. no bias
- IMSE: $L_S(f) = \mathbb{E}_X \left[\int_S (f(s) X_s)^2 ds \right]$
- <u>solution</u>: weights λ* depend on covariance function and s: f_{λ*}(s) = ^tX(s_n)Σ(s_n)⁻¹c_n(s)

Simple Kriging: predict the value of X at some unobserved location s, based on n sampled observations $(X_{s_i})_{i \le n}$, assuming a linear combination of the observations: $f_{\lambda}(s) = \langle \lambda(s), \mathbf{X}(\mathbf{s}_n) \rangle$.

- <u>problem</u>: find λ* minimising variance, s.t. no bias
- IMSE: $L_s(f) = \mathbb{E}_X \left[\int_s (f(s) X_s)^2 ds \right]$

Remark (Exact Interpolation):

- at observed points: exact interpolator
- at unobserved points: linear combination of data

 <u>solution</u>: weights λ* depend on covariance function and s: f_{λ*}(s) = ^tX(s_n)Σ(s_n)⁻¹c_n(s)

theoretical kriging:	
covariance function known	
$\Longrightarrow X^*$ BLUP	
(Best Linear Unbiased Predictor)	

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

Spatial Analysis

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

need to estimate covariance function

Spatial Analysis

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

need to estimate covariance function

Plug-in predictive rules:

Spatial Analysis

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

need to estimate covariance function

Plug-in predictive rules:

• covariance function **estimator**: $\hat{c}(h) = \frac{1}{n_h} \sum X_{s_i} X_{s_j}$, where sum over set N(h) of pairs at distance h and $n_h = |N(h)|$

Spatial Analysis

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

need to estimate covariance function

Plug-in predictive rules:

- covariance function **estimator**: $\hat{c}(h) = \frac{1}{n_h} \sum X_{s_i} X_{s_j}$, where sum over set N(h) of pairs at distance h and $n_h = |N(h)|$
- construct an estimator $\hat{\lambda}$ of λ^* by replacing the unknown quantities by their estimators $\hat{c}_n(s)$ and $\hat{\Sigma}(s_n)$ (plug-in)

Spatial Analysis

theoretical kriging:	empirical kriging:
covariance function known	in practice,
$\Longrightarrow X^*$ BLUP	covariance function unknown
(Best Linear Unbiased Predictor)	$\Longrightarrow \widehat{X}$ no guarantees of BLUP

need to estimate covariance function

Plug-in predictive rules:

- covariance function **estimator**: $\hat{c}(h) = \frac{1}{n_h} \sum X_{s_i} X_{s_j}$, where sum over set N(h) of pairs at distance h and $n_h = |N(h)|$
- construct an estimator $\hat{\lambda}$ of λ^* by replacing the unknown quantities by their estimators $\hat{c}_n(s)$ and $\hat{\Sigma}(s_n)$ (plug-in)
- ⇒ need to establish rate bounds that assess the generalization capacity of the resulting predictive map

Machine Learning

- predict the values of a random variable for unobserved input
 - based on **independent** observations $(x_i, y_i)_{1 \le i \le n} = (\text{input, output})$
 - minimise Mean Squared Error by Empirical Risk Minimisation

- predict the values of a random variable for unobserved input
 - based on **independent** observations $(x_i, y_i)_{1 \le i \le n}$ = (input, output)
 - minimise Mean Squared Error by Empirical Risk Minimisation
- ridge regression: penalty term \implies avoid overfitting

- predict the values of a random variable for unobserved input
 - based on **independent** observations $(x_i, y_i)_{1 \le i \le n} = (\text{input, output})$
 - minimise Mean Squared Error by Empirical Risk Minimisation
- ridge regression: penalty term \implies avoid overfitting
- kernel trick: transform data space \implies solve a non linear problem:

$$\hat{f} = \arg\min_{f \in \mathscr{H}} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\eta}{2} \|f\|_{\mathscr{H}}^2 \right\}, \quad \text{where} (\mathscr{H}, \langle \cdot, \cdot \rangle_{\mathscr{H}}) \text{ RKHS}$$

What is Kernel Ridge Regression?

- predict the values of a random variable for unobserved input
 - based on **independent** observations $(x_i, y_i)_{1 \le i \le n}$ = (input, output)
 - minimise Mean Squared Error by Empirical Risk Minimisation
- ridge regression: penalty term \implies avoid overfitting
- kernel trick: transform data space \implies solve a non linear problem:

$$\hat{f} = \arg\min_{f \in \mathscr{H}} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \frac{\eta}{2} \|f\|_{\mathscr{H}}^2 \right\}, \quad \text{where } (\mathscr{H}, \langle \cdot, \cdot \rangle_{\mathscr{H}}) \text{ RKHS}$$

$$\implies \hat{f}(x) =^{t} \mathbf{Y}_{n} (\eta I_{n} + \mathscr{K}_{n})^{-1} \kappa_{n}(x)$$

Gram matrix ↔ ↔ kernel vector

- 1. Connections between SK and KRR
- 2. Nonasymptotic bound for the Excess of Risk
- 3. Illustrative Numerical Experiments

Main Results Connections: $ML \leftrightarrow Geostat$

Machine Learning:

Main Results Connections: $ML \leftrightarrow Geostat$

Machine Learning:

- goal: build predictor for new unobserved data
- goal: build complete map (prediction at each unobserved location)

Main Results Connections: ML ↔ Geostat

Machine Learning:

- goal: build predictor for new unobserved data
- choice of kernel function

- goal: build complete map (prediction at each unobserved location)
- nonparametric covariance estimation

Main Results Connections: $ML \leftrightarrow Geostat$

Machine Learning:

- goal: build predictor for new unobserved data
- choice of **kernel** function

 $\hat{f}(\mathbf{x}) =^{t} \mathbf{Y}_{n} \left(\eta I_{n} + \mathscr{K}_{n} \right)^{-1} \kappa_{n}(\mathbf{x})$

- goal: build complete map (prediction at each unobserved location)
- nonparametric covariance estimation

$$f_{\hat{\lambda}}(s) =^{t} \mathbf{X}(\mathbf{s}_{n}) \widehat{\boldsymbol{\Sigma}}(\mathbf{s}_{n})^{-1} \widehat{\mathbf{c}}_{n}(s)$$

Main Results Connections: $ML \leftrightarrow Geostat$

Machine Learning:

- goal: build predictor for new unobserved data
- choice of kernel function

 $\hat{f}(x) =^{t} \mathbf{Y}_{n} \left(\eta I_{n} + \mathscr{K}_{n} \right)^{-1} \kappa_{n}(x)$

- goal: build complete map (prediction at each unobserved location)
- nonparametric covariance estimation

$$f_{\hat{\lambda}}(s) =^{t} \mathbf{X}(\mathbf{s}_{n}) \widehat{\boldsymbol{\Sigma}}(\mathbf{s}_{n})^{-1} \widehat{\mathbf{c}}_{n}(s)$$

- \implies kriging predictor same form as kernel ridge regressor:
 - regularised Gram matrix ↔ covariance matrix
 - kernel vector ↔ covariance vector

What global gap between optimal **theoretical** predictor and **empirical** predictor **errors**?

What global gap between optimal **theoretical** predictor and **empirical** predictor **errors**?

Concentration Inequality:

- predictor accuracy measured by MSE
- global excess risk quantify gap

What global gap between optimal **theoretical** predictor and **empirical** predictor **errors**?

Concentration Inequality:

- predictor accuracy measured by MSE
- global excess risk quantify gap

 \implies <u>Goal</u>: define nonasymptotic bound of global excess risk:

What global gap between optimal **theoretical** predictor and **empirical** predictor **errors**?

Concentration Inequality:

- predictor accuracy measured by MSE
- global excess risk quantify gap

 \implies <u>Goal</u>: define nonasymptotic bound of global excess risk:

$$L_{S}(f_{\widehat{\lambda}}) - L_{S}(f_{\lambda^{*}}) = \mathbb{E}_{X}\left[\int_{s \in S} (f_{\widehat{\lambda}}(s) - f_{\lambda^{*}}(s))^{2} ds\right]$$

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

 $\longrightarrow \checkmark$ allows to give an **inferior bound** on n_h the number of pairs at distance h

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

 $\longrightarrow \checkmark$ allows to give an **inferior bound** on n_h the number of pairs at distance h

• Assumption 5: $\exists m, M < \infty$, eigenvalues of covariance matrix are bounded

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

 $\longrightarrow \checkmark$ allows to give an **inferior bound** on n_h the number of pairs at distance h

• Assumption 5: $\exists m, M < \infty$, eigenvalues of covariance matrix are bounded

 $\longrightarrow \sqrt{}$ taken into account in the tail bounds of the estimators

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

 $\longrightarrow \checkmark$ allows to give an **inferior bound** on n_h the number of pairs at distance h

• Assumption 5: $\exists m, M < \infty$, eigenvalues of covariance matrix are bounded

 $\longrightarrow \sqrt{}$ taken into account in the tail bounds of the estimators

• <u>Assumption 6:</u> c is of class \mathscr{C}^1 and its gradient is bounded by D (regularity hypothesis)

Additional Assumptions

• Assumption 4: $\exists j_1 \ge 1$, $\forall h \ge 1 - 2^{-j_1}$, c(h) = 0 (border hypothesis)

 $\longrightarrow \checkmark$ allows to give an **inferior bound** on n_h the number of pairs at distance h

• Assumption 5: $\exists m, M < \infty$, eigenvalues of covariance matrix are bounded

 $\longrightarrow \sqrt{}$ taken into account in the tail bounds of the estimators

• Assumption 6: c is of class \mathscr{C}^1 and its gradient is bounded by D (regularity hypothesis)

 \rightarrow \checkmark taken into account when studying the estimation error of the covariance function for all lags (smoothness of the covariance function)

Main Results Nonasymptotic bound for Excess of Risk

Theorem ([Siviero et al., 2022])

For any $\delta \in (0, 1)$, we have with probability at least $1 - \delta$:

$$L_{\delta}(f_{\lambda}) - L_{\delta}(f_{\lambda^*}) \leq C_{\delta} \frac{\log(n/\delta)}{n} + \frac{2D^2}{n+1}$$

as soon as $n \ge C'_{\delta} \log(n/\delta)$, where C_{δ} and C'_{δ} are nonnegative constants depending on j_1 , m and M solely.

Sketch of Proof

Poisson tail bounds

Sketch of Proof

Bound on covariance estimation error

13/17

What can we tell about the covariance matrix accuracy?

What can we tell about the covariance matrix accuracy?

• under Hyp 2, $\widehat{\Sigma}(s_n)$ is symmetric and semi-positive definite

What can we tell about the covariance matrix accuracy?

- under Hyp 2, $\widehat{\Sigma}(s_n)$ is symmetric and semi-positive definite
- Bochner's theorem applies: bound deviation thanks to the connection between covariance matrix and spectral density [Hall and Patil, 1994]

What can we tell about the covariance matrix accuracy?

- under Hyp 2, $\hat{\Sigma}(s_n)$ is symmetric and semi-positive definite
- Bochner's theorem applies: bound deviation thanks to the connection between covariance matrix and spectral density [Hall and Patil, 1994]

 $\implies \text{nonasymptotic bound on accuracy of covariance matrix estimator} \\ \rho\left(\widehat{\Sigma}(\mathbf{s}_n) - \Sigma(\mathbf{s}_n)\right)$

Sketch of Proof

$$\forall s \in S, \ \left(f_{\widehat{\lambda}}(s) - f_{\lambda^*}(s)\right)^2 \le \|\widehat{\lambda}(s) - \lambda^*(s)\|^2 \times \|\mathbf{X}(\mathbf{s}_n)\|^2$$

Illustrative Numerical Experiments

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Figure 1: Truncated power law (TPL)

 \checkmark satisfies all the assumptions

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Figure 1: Truncated power law (TPL)

 \checkmark satisfies all the assumptions

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Remark: experiments corroborate our theoretical results

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Remark: experiments corroborate our theoretical results

• both covariance models: for small values of *j*₁, excess of risk is small

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Remark: experiments corroborate our theoretical results

- both covariance models: for small values of *j*₁, excess of risk is small
- bound depends on *j*₁ (role of technical assumptions is verified)

Maps of MSE on 100 realisations, with two covariance models (for fixed j_1)

Remark: experiments corroborate our theoretical results

- both covariance models: for small values of *j*₁, excess of risk is small
- bound depends on j₁ (role of technical assumptions is verified)
- ⇒ results for Gaussian covariance encourages to relax Hyp 4

• incremental way to proceed

- incremental way to proceed
- gradually relax some hypotheses:

- incremental way to proceed
- gradually relax some hypotheses:
 - Assumption 4 (border hypothesis) less restrictive: $c(h) \searrow 0$
 - Assumption 6 (regularity hypothesis): other smoothing techniques
 - Irregular grid: biased semi-variogram estimator, inferior bound on n_h
 - Assumption 2: outside the Gaussian case

- incremental way to proceed
- gradually relax some hypotheses:
 - Assumption 4 (border hypothesis) less restrictive: $c(h) \searrow 0$
 - Assumption 6 (regularity hypothesis): other smoothing techniques
 - Irregular grid: biased semi-variogram estimator, inferior bound on n_h
 - Assumption 2: outside the Gaussian case
- partitioning methods (dyadic CART): divide spatial domain into clusters where the process is *locally stationary*

• novel theoretical framework offering guarantees for empirical simple Kriging rules in the form of non-asymptotic bounds

- novel theoretical framework offering guarantees for empirical simple Kriging rules in the form of non-asymptotic bounds
- theoretical guarantees for dependent databases

- novel theoretical framework offering guarantees for empirical simple Kriging rules in the form of non-asymptotic bounds
- theoretical guarantees for **dependent** databases

 \implies industrial assets and many possible **applications**

- novel theoretical framework offering guarantees for empirical simple Kriging rules in the form of non-asymptotic bounds
- theoretical guarantees for dependent databases

 \implies industrial assets and many possible **applications**

• possible extensions to a more general framework

Thanks for your attention !

References I

[Hall and Patil, 1994] Hall, P. and Patil, P. (1994).

Properties of Nonparametric Estimators of Autocovariance for Stationary Random Fields. Probability Theory and Related Fields, 99(3):399-424.

[Siviero et al., 2022] Siviero, E., Chautru, E., and Clémençon, S. (2022). A Statistical Learning View of Simple Kriging.