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Introduction
Geostatistical context

Geo-databases: information from location and value of the data

• data sets of spatial nature
⇒ dependence structure:
close data are more related

• unique realisation of the
phenomenon: no independent
repetitions of the random field

Different from usual statistical learning theory:
non independent observations
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Introduction
Motivations

Machine Learning:

• Assets: statistical learning
theory for independent data,
nonparametric theory

• Limits: no theoretical
guarantees for dependent data

Spatial Analysis:

• Assets: take advantage of
spatial structure (modelled by
covariance function)

• Limits: very few nonparametric
theories

• Limits: lack of nonasymptotic results
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Introduction
Objectives

Research Questions:

• how dependence structure of spatial data affects learning rates?

• how spatial data can be processed by ML techniques with
generalisation guarantees?

• connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study
of the performances of a (nonparametric) covariance estimator

3/17



Introduction
Objectives

Research Questions:

• how dependence structure of spatial data affects learning rates?
• how spatial data can be processed by ML techniques with

generalisation guarantees?

• connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study
of the performances of a (nonparametric) covariance estimator

3/17



Introduction
Objectives

Research Questions:

• how dependence structure of spatial data affects learning rates?
• how spatial data can be processed by ML techniques with

generalisation guarantees?
• connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study
of the performances of a (nonparametric) covariance estimator

3/17



Introduction
Objectives

Research Questions:

• how dependence structure of spatial data affects learning rates?
• how spatial data can be processed by ML techniques with

generalisation guarantees?
• connections between Simple Kriging and Kernel Ridge Regression?

Objective: develop framework for kriging based on (nonasymptotic) study
of the performances of a (nonparametric) covariance estimator

3/17



Preliminaries

1. Simple Kriging
2. Kernel Ridge Regression

3/17



Preliminaries
Notations

• S ⊂ R2 spatial domain

• X = {Xs, s ∈ S} second-order random field (RF)
• C(s, t) = Cov(Xs, Xt) covariance function of X
• X(sn) = (Xsi)1≤i≤n observations of X at locations sn = (si)1≤i≤n
• cn(s) = (Cov(Xs, Xsi))1≤i≤n covariance vector
• (sn) = Var(X(sn)) = (Cov(Xsj , Xsi))1≤i,j≤n covariance matrix
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Preliminaries
Assumptions

Limitation: unique realisation with only finite number of observations

Solution: stationarity assumption −→ successful frequentist approach
• Assumption 1: X second order stationary and isotropic RF: constant

mean μ and invariant covariance C (depends only on distance h):
∃c,C(s, t) = c(∥t− s∥) = c(h)
−→
p

X is sufficiently homogeneous inside the spatial domain
• Assumption 2: X Gaussian RF with zero mean (Simple Kriging) and

positive definite covariance function
−→
p all the laws are known

• Assumption 3: infill asymptotic: number of observations within spatial
domain S increases (denser and denser grid) and regular grid
−→
p allows to control the spectrum of the covariance matrix
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Preliminaries
Spatial Analysis

Simple Kriging: predict the value of X at some unobserved location s,
based on n sampled observations (Xsi)i≤n, assuming a linear combination
of the observations: fλ(s) = 〈λ(s),X(sn)〉.

• problem: find λ∗ minimising
variance, s.t. no bias
• IMSE: LS(f) = EX

[︀∫︀
S (f(s) − Xs)2 ds

]︀
• solution: weights λ∗ depend

on covariance function and s:
fλ∗(s) = tX(sn)(sn)−1cn(s)

Remark (Exact Interpolation):

• at observed points: exact
interpolator

• at unobserved points: linear
combination of data
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Preliminaries
Spatial Analysis

theoretical kriging:

empirical kriging:

covariance function known

in practice,

=⇒ X∗ BLUP

covariance function unknown

(Best Linear Unbiased Predictor)

=⇒ ̂︀X no guarantees of BLUP
need to estimate covariance function

Plug-in predictive rules:

• covariance function estimator:̂︀c(h) = 1
nh

∑︀
XsiXsj , where sum over

set N(h) of pairs at distance h and nh = |N(h)|
• construct an estimator ̂︀λ of λ∗ by replacing the unknown quantities

by their estimatorŝ︀cn(s) and ̂︀(sn) (plug-in)
=⇒ need to establish rate bounds that assess the generalization capacity

of the resulting predictive map
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Preliminaries
Machine Learning

What is Kernel Ridge Regression?

• predict the values of a random variable for unobserved input
– based on independent observations (xi, yi)1≤i≤n = (input, output)– minimise Mean Squared Error by Empirical Risk Minimisation

• ridge regression: penalty term =⇒ avoid overfitting
• kernel trick: transform data space =⇒ solve a non linear problem:

f̂ = argmin
f∈H

{︃ 1
2

n∑︁
i=1
(yi − f(xi))2 +

η

2 ∥f∥2H
}︃
, where (H , 〈·, ·〉H ) RKHS

=⇒ f̂(x) =t Yn (ηIn + Kn)−1 κn(x)
Gram matrix←- ,→ kernel vector
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Main Results

1. Connections between SK and KRR
2. Nonasymptotic bound for the Excess of Risk
3. Illustrative Numerical Experiments
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Main Results
Connections: ML↔Geostat

Machine Learning:

• goal: build predictor for
new unobserved data

• choice of kernel function
f̂(x) =t Yn (ηIn + Kn)

−1
κn(x)

Geostatistics:

• goal: build complete map (prediction at
each unobserved location)

• nonparametric covariance estimation
fλ̂(s) =t X(sn)̂︀(sn)−1̂︀cn(s)

=⇒ kriging predictor same form as kernel ridge regressor:
• regularised Gram matrix ↔ covariance matrix
• kernel vector ↔ covariance vector
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Main Results
Nonasymptotic theory

What global gap between optimal theoretical predictor and
empirical predictor errors?

Concentration Inequality:

• predictor accuracy measured by MSE
• global excess risk quantify gap

=⇒ Goal: define nonasymptotic bound of global excess risk:
LS(f̂︀λ) − LS (fλ∗) = EX

[︂∫︁
s∈S
(f̂︀λ(s) − fλ∗(s))2 ds

]︂
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Main Results
Additional Assumptions

• Assumption 4: ∃ j1 ≥ 1, ∀h ≥ 1− 2−j1 , c(h) = 0 (border hypothesis)

−→
p allows to give an inferior bound on nh the number of pairs at

distance h
• Assumption 5: ∃m,M <∞, eigenvalues of covariance matrix are

bounded
−→
p taken into account in the tail bounds of the estimators

• Assumption 6: c is of class C 1 and its gradient is bounded by D
(regularity hypothesis)

−→
p taken into account when studying the estimation error of the

covariance function for all lags (smoothness of the covariance
function)
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Main Results
Nonasymptotic bound for Excess of Risk

Theorem ([Siviero et al., 2022])
For any δ ∈ (0, 1), we have with probability at least 1− δ:

LS(f̂︀λ) − LS (fλ∗) ≤ C6
log(n/δ)

n
+

2D2
n+ 1 ,

as soon as n ≥ C′6 log(n/δ), where C6 and C′6 are nonnegative constants
depending on j1, m and M solely.
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Sketch of Proof
Poisson tail bounds

∀s ∈ S,
(︀
f̂︀λ(s) − fλ∗ (s)

)︀2 ≤ ∥̂︀λ(s) − λ∗(s)∥2 × ∥X(sn)∥2

Distributions of estimatorŝ︀ch(0) and ̂︀γ(h)Hyp 2Gaussian hyp Inferior bound on nh Hyp 4border hyp

Poisson tail bounds for deviations
|̂︀γ(h) − γ(h)| and |̂︀ch(0) − c(0)|Hyp 5bounded eigenvalues

Bound on covariance estimation error
for all lagsHyp 6regularity hyp

Nonasymptotic bound on accuracy
of covariance matrix estimator ̂︀(sn)

Bound on deviation ∥̂︀λ(s) − λ∗(s)∥
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Distributions of estimatorŝ︀ch(0) and ̂︀γ(h)Hyp 2Gaussian hyp Inferior bound on nh Hyp 4border hyp

Poisson tail bounds for deviations
|̂︀γ(h) − γ(h)| and |̂︀ch(0) − c(0)|Hyp 5bounded eigenvalues

Bound on covariance estimation error
for all lagsHyp 6regularity hyp

Nonasymptotic bound on accuracy
of covariance matrix estimator ̂︀(sn)

Bound on deviation ∥̂︀λ(s) − λ∗(s)∥

13/17



Sketch of Proof
Bound on accuracy of ̂︀(sn)

∀s ∈ S,
(︀
f̂︀λ(s) − fλ∗ (s)

)︀2 ≤ ∥̂︀λ(s) − λ∗(s)∥2 × ∥X(sn)∥2
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Sketch of Proof
Bound on accuracy of ̂︀(sn)
What can we tell about the covariance matrix accuracy?

• under Hyp 2, ̂︀(sn) is symmetric and semi-positive definite
• Bochner’s theorem applies: bound deviation thanks to the connection

between covariance matrix and spectral density [Hall and Patil, 1994]
=⇒ nonasymptotic bound on accuracy of covariance matrix estimator
ρ

(︁̂︀(sn) − (sn)
)︁
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Illustrative Numerical Experiments
Maps of MSE on 100 realisations, with two covariance models (for fixed j1)

Figure 1: Truncated power law (TPL)
✓ satisfies all the assumptions

Figure 2: Gaussian
× not Hyp 4, but vanishes quickly

Remark: experiments corroborate our theoretical results
• both covariance models: for small values of j1, excess of risk is small

• bound depends on j1 (role of technical assumptions is verified)
=⇒ results for Gaussian covariance encourages to relax Hyp 4
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Ongoing and future work

• incremental way to proceed

• gradually relax some hypotheses:
– Assumption 4 (border hypothesis) less restrictive: c(h)↘ 0
– Assumption 6 (regularity hypothesis): other smoothing techniques
– Irregular grid: biased semi-variogram estimator, inferior bound on nh
– Assumption 2: outside the Gaussian case

• partitioning methods (dyadic CART): divide spatial domain into
clusters where the process is locally stationary
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Conclusion
• novel theoretical framework offering guarantees for empirical simple

Kriging rules in the form of non-asymptotic bounds

• theoretical guarantees for dependent databases
=⇒ industrial assets and many possible applications

• possible extensions to a more general framework
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Thanks for your attention !
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