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What about spoken language and dialog?
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Dialog vs Monolog

- Differences between speakers (background, world knowledge, idiolect, 

language level, opinion…)

- In dialog: misunderstandings, disagreements

- The monolog speaker may be unaware of potential ambiguities in their 

discourse

- In dialog, speakers often align in the way they talk (Pickering and Garrod, 2004)

asdbkjj sqwhk a wiugdj  
qwd sakh hjkhs qpiw 
da  ak sjhdkq sj shf 
sjehu fgwi qkdh kqh 
dkh sjdhy lqjd ksn bm

asdbkjj sqwhk a wiugdj  
qwd sakh hjkhs qpiw da  
ak sjhdkq sj shf sjehu fgwi 
qkdh kqh dkh sjdhy lqjd 
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- We perform automatic WSD on multiple different datasets,

- we calculate different polysemy measures (and propose our own),

- we compare the results for different kinds of texts.
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(Spoken) Data

● 2020 US presidential debate (Joe Biden vs Donald Trump)

● Iemocap (Busso et al., 2008): hypothetical emotional conversations between 
actors

15 Monologs 
(longer topic-initial turns)

6 Dialogs 
(subsequent interaction about a topic)

71 Scripted 80 Spontaneous
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(Spoken, Spontaneous, Dialog) Data

● JUSThink (Norman et al., 2021) 10 task-oriented conversations between 

children

● Switchboard (Stolcke et al., 2000) 1,126 conversations on a provided topic

● HCRC MapTask Corpus (Thompson et al., 1993) 128 task-oriented 

conversations

● BT Oasis Corpus (Leech and Weisser, 2003) 378 calls to British Telecom and 

Trainline operator services
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(Written) Data

Three WSD evaluation campaings (Raganato et al., 2017)

● Senseval-2 (Edmonds and Cotton, 2001)    (3 texts)

● Senseval-3 task 1 (Snyder and Palmer, 2004)    (3 texts)

● SemEval-15 task 13 (Moro and Navigli, 2015)   (4 texts)
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Conclusion and Future Work

❖ Spoken texts tend to present a higher level of observed polysemy than 

written discourse

❖ Useful for WSD of different kinds of text: the OSD heuristic may work less 

well on this kind of data

❖ What kind of words tend to be used in multiple senses in a discourse? 

❖ Is observed polysemy higher when speakers disagree on a topic?
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Differences in Word Usage between Stances

BERT (Devlin et al., 2019) representations of words that are relevant to the topic (animal, 
zoo, live, habitat) differ the most between these two groups

Word representations have higher similarity within a stance than between opposing 
stances       if we share an opinion, we use words in a similar way

Do we use words differently depending on our opinions?

                   IN FAVOR OF Zoos           AGAINST Zoos

  TEASER



Thank you!
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Discourse Length and Lexical Diversity

- Discourse length correlates positively with observed polysemy 
(longer text -> more occasions to reuse a word in a different sense)

- Lexical diversity correlates negatively with observed polysemy 
(lower diversity -> words are reused more often -> higher changes of encountering 
different senses for a word)


