
Listen to Interpret: Post-hoc Interpretability
for Audio Networks with NMF

Jayneel Parekh
(Co-authors: Sanjeel Parekh, Pavlo Mozharovskyi, Florence d’Alché-Buc, Gaël

Richard)

LTCI, Télécom Paris, IP Paris

June 15, 2022

Introduction

• Interpretability: To make decision process of an AI system
human-understandable.

• Most developed methods for interpretability applicable for image or
tabular data. Do not transfer well to other modalities. For e.g.
saliency maps over spectrograms hard to interpret for end-user.

• Require audio-specific understandability features in our interpreter.
Imagine a classifier detecting an “alarm” sound event. An ideal
interpreter would be able to:

Localize the alarm event amid a host of other background events
Provide it as listenable audio to an end-user

• However, note that interpretation is NOT the same as classical
audio source separation or denoising tasks!

Introduction

• Interpretability: To make decision process of an AI system
human-understandable.

• Most developed methods for interpretability applicable for image or
tabular data. Do not transfer well to other modalities. For e.g.
saliency maps over spectrograms hard to interpret for end-user.

• Require audio-specific understandability features in our interpreter.
Imagine a classifier detecting an “alarm” sound event. An ideal
interpreter would be able to:

Localize the alarm event amid a host of other background events
Provide it as listenable audio to an end-user

• However, note that interpretation is NOT the same as classical
audio source separation or denoising tasks!

Introduction

• Interpretability: To make decision process of an AI system
human-understandable.

• Most developed methods for interpretability applicable for image or
tabular data. Do not transfer well to other modalities. For e.g.
saliency maps over spectrograms hard to interpret for end-user.

• Require audio-specific understandability features in our interpreter.
Imagine a classifier detecting an “alarm” sound event. An ideal
interpreter would be able to:

Localize the alarm event amid a host of other background events
Provide it as listenable audio to an end-user

• However, note that interpretation is NOT the same as classical
audio source separation or denoising tasks!

Introduction

• Interpretability: To make decision process of an AI system
human-understandable.

• Most developed methods for interpretability applicable for image or
tabular data. Do not transfer well to other modalities. For e.g.
saliency maps over spectrograms hard to interpret for end-user.

• Require audio-specific understandability features in our interpreter.
Imagine a classifier detecting an “alarm” sound event. An ideal
interpreter would be able to:

Localize the alarm event amid a host of other background events
Provide it as listenable audio to an end-user

• However, note that interpretation is NOT the same as classical
audio source separation or denoising tasks!

Problem formulation

• Post-hoc interpretation problem for audio processing networks
We are provided with a fixed model f whose decisions we wish to
interpret
f is a deep neural network that processes audio signals

• We operate in a supervised classification setting (both multi-class or
multi-label classification possible)

• Working under the FLINT framework, i.e., propose to learn an
interpreter module / interpreter I (relying on hidden layers of f) by
minimizing a loss function L s.t. we can satisfy requirements for
interpretability

arg min
VI
L(f , I,S)

Problem formulation

• Post-hoc interpretation problem for audio processing networks
We are provided with a fixed model f whose decisions we wish to
interpret
f is a deep neural network that processes audio signals

• We operate in a supervised classification setting (both multi-class or
multi-label classification possible)

• Working under the FLINT framework, i.e., propose to learn an
interpreter module / interpreter I (relying on hidden layers of f) by
minimizing a loss function L s.t. we can satisfy requirements for
interpretability

arg min
VI
L(f , I,S)

Problem formulation

• Post-hoc interpretation problem for audio processing networks
We are provided with a fixed model f whose decisions we wish to
interpret
f is a deep neural network that processes audio signals

• We operate in a supervised classification setting (both multi-class or
multi-label classification possible)

• Working under the FLINT framework, i.e., propose to learn an
interpreter module / interpreter I (relying on hidden layers of f) by
minimizing a loss function L s.t. we can satisfy requirements for
interpretability

arg min
VI
L(f , I,S)

System Motivation

The functions of the ideal interpreter can be described as:
1. Interpretations through high-level audio objects constituting a scene

2. Ability to identify parts of input relevant to decision.

3. Extract the identified parts as listenable audio.

Is it possible to process intermediate layers of audio network and extract
representation which can serve the above functions?
Design of representations as in NMF an attractive option!

1. Decompose input audio in spectral patterns + time activations (via
a loss function).

2. Encourage approximation of classifier decision from extracted
representation (via a loss function).

3. Take advantage of soft-masking and inverse STFT operations.

System Motivation

The functions of the ideal interpreter can be described as:
1. Interpretations through high-level audio objects constituting a scene

2. Ability to identify parts of input relevant to decision.

3. Extract the identified parts as listenable audio.

Is it possible to process intermediate layers of audio network and extract
representation which can serve the above functions?

Design of representations as in NMF an attractive option!

1. Decompose input audio in spectral patterns + time activations (via
a loss function).

2. Encourage approximation of classifier decision from extracted
representation (via a loss function).

3. Take advantage of soft-masking and inverse STFT operations.

System Motivation

The functions of the ideal interpreter can be described as:
1. Interpretations through high-level audio objects constituting a scene

2. Ability to identify parts of input relevant to decision.

3. Extract the identified parts as listenable audio.

Is it possible to process intermediate layers of audio network and extract
representation which can serve the above functions?
Design of representations as in NMF an attractive option!

1. Decompose input audio in spectral patterns + time activations (via
a loss function).

2. Encourage approximation of classifier decision from extracted
representation (via a loss function).

3. Take advantage of soft-masking and inverse STFT operations.

System Motivation

The functions of the ideal interpreter can be described as:
1. Interpretations through high-level audio objects constituting a scene

2. Ability to identify parts of input relevant to decision.

3. Extract the identified parts as listenable audio.

Is it possible to process intermediate layers of audio network and extract
representation which can serve the above functions?
Design of representations as in NMF an attractive option!

1. Decompose input audio in spectral patterns + time activations (via
a loss function).

2. Encourage approximation of classifier decision from extracted
representation (via a loss function).

3. Take advantage of soft-masking and inverse STFT operations.

What is NMF?

Non-negative Matrix Factorization – popular for unsupervised
decomposition of audio signals.

Given positive time–frequency
representation X ∈ RF×T

+ (F frequency bins & T time frames), NMF
decomposes it as,

X ≈WH,W ≥ 0,H ≥ 0

• W = [w1,w2, . . . ,wK] ∈ RF×K
+ is interpreted as the spectral pattern

or dictionary matrix containing K components
• H = [h1,h2, . . . ,hK]ᵀ ∈ RK×T

+ a matrix containing the
corresponding time activations

Variants of NMF-algorithm can also be used for dictionary learning on a
dataset, by estimating W on a training dataset matrix Xtrain.

What is NMF?

Non-negative Matrix Factorization – popular for unsupervised
decomposition of audio signals. Given positive time–frequency
representation X ∈ RF×T

+ (F frequency bins & T time frames), NMF
decomposes it as,

X ≈WH,W ≥ 0,H ≥ 0

• W = [w1,w2, . . . ,wK] ∈ RF×K
+ is interpreted as the spectral pattern

or dictionary matrix containing K components
• H = [h1,h2, . . . ,hK]ᵀ ∈ RK×T

+ a matrix containing the
corresponding time activations

Variants of NMF-algorithm can also be used for dictionary learning on a
dataset, by estimating W on a training dataset matrix Xtrain.

What is NMF?

Non-negative Matrix Factorization – popular for unsupervised
decomposition of audio signals. Given positive time–frequency
representation X ∈ RF×T

+ (F frequency bins & T time frames), NMF
decomposes it as,

X ≈WH,W ≥ 0,H ≥ 0

• W = [w1,w2, . . . ,wK] ∈ RF×K
+ is interpreted as the spectral pattern

or dictionary matrix containing K components

• H = [h1,h2, . . . ,hK]ᵀ ∈ RK×T
+ a matrix containing the

corresponding time activations

Variants of NMF-algorithm can also be used for dictionary learning on a
dataset, by estimating W on a training dataset matrix Xtrain.

What is NMF?

Non-negative Matrix Factorization – popular for unsupervised
decomposition of audio signals. Given positive time–frequency
representation X ∈ RF×T

+ (F frequency bins & T time frames), NMF
decomposes it as,

X ≈WH,W ≥ 0,H ≥ 0

• W = [w1,w2, . . . ,wK] ∈ RF×K
+ is interpreted as the spectral pattern

or dictionary matrix containing K components
• H = [h1,h2, . . . ,hK]ᵀ ∈ RK×T

+ a matrix containing the
corresponding time activations

Variants of NMF-algorithm can also be used for dictionary learning on a
dataset, by estimating W on a training dataset matrix Xtrain.

What is NMF?

Non-negative Matrix Factorization – popular for unsupervised
decomposition of audio signals. Given positive time–frequency
representation X ∈ RF×T

+ (F frequency bins & T time frames), NMF
decomposes it as,

X ≈WH,W ≥ 0,H ≥ 0

• W = [w1,w2, . . . ,wK] ∈ RF×K
+ is interpreted as the spectral pattern

or dictionary matrix containing K components
• H = [h1,h2, . . . ,hK]ᵀ ∈ RK×T

+ a matrix containing the
corresponding time activations

Variants of NMF-algorithm can also be used for dictionary learning on a
dataset, by estimating W on a training dataset matrix Xtrain.

System Overview

• f is the audio-processing deep network we wish to interpret.

System Overview

• Ψ(fI(x)) ∈ RK×T
+ produces an intermediate encoding of the

interpreter. For simplicity, denote it as HI(x) = Ψ ◦ fI(x)

System Overview

• Intermediate encoding used with dictionary W (learnt apriori, fixed)
to reconstruct X. HI(x) can then be seen as time activations.

System Overview

• The interpreter computes the output Θ ◦HI(x) and aims to mimic
output of classifier f (x). Shapes HI(x) to interpret classifier output.

Design of Interpreter network
Design of Ψ.
• Downsample on the frequency axis, upsample on time axis

• Axis for # of channels should transform to axis of number of
components K .

Design of Θ.
• First pools activations HI(x) across time. Attention–based pooling

(Ilse et al., 2018), z = HI(x)a, where a ∈ RT , z ∈ RK .
• Operate on z with a linear layer to generate the output.

Fidelity loss: To encourage Θ ◦HI(x) to approximate f (x)

LFID(x ,VΨ,VΘ) = −f (x)ᵀ log(Θ(HI(x))) (1)

For multi-label classification,

LFID(x ,VΨ,VΘ) =−
∑

f (x)� log(Θ(HI(x)))

+ (1− f (x))� log(1−Θ(HI(x))).
(2)

Design of Interpreter network
Design of Ψ.
• Downsample on the frequency axis, upsample on time axis
• Axis for # of channels should transform to axis of number of

components K .

Design of Θ.
• First pools activations HI(x) across time. Attention–based pooling

(Ilse et al., 2018), z = HI(x)a, where a ∈ RT , z ∈ RK .
• Operate on z with a linear layer to generate the output.

Fidelity loss: To encourage Θ ◦HI(x) to approximate f (x)

LFID(x ,VΨ,VΘ) = −f (x)ᵀ log(Θ(HI(x))) (1)

For multi-label classification,

LFID(x ,VΨ,VΘ) =−
∑

f (x)� log(Θ(HI(x)))

+ (1− f (x))� log(1−Θ(HI(x))).
(2)

Design of Interpreter network
Design of Ψ.
• Downsample on the frequency axis, upsample on time axis
• Axis for # of channels should transform to axis of number of

components K .

Design of Θ.
• First pools activations HI(x) across time. Attention–based pooling

(Ilse et al., 2018), z = HI(x)a, where a ∈ RT , z ∈ RK .

• Operate on z with a linear layer to generate the output.

Fidelity loss: To encourage Θ ◦HI(x) to approximate f (x)

LFID(x ,VΨ,VΘ) = −f (x)ᵀ log(Θ(HI(x))) (1)

For multi-label classification,

LFID(x ,VΨ,VΘ) =−
∑

f (x)� log(Θ(HI(x)))

+ (1− f (x))� log(1−Θ(HI(x))).
(2)

Design of Interpreter network
Design of Ψ.
• Downsample on the frequency axis, upsample on time axis
• Axis for # of channels should transform to axis of number of

components K .

Design of Θ.
• First pools activations HI(x) across time. Attention–based pooling

(Ilse et al., 2018), z = HI(x)a, where a ∈ RT , z ∈ RK .
• Operate on z with a linear layer to generate the output.

Fidelity loss: To encourage Θ ◦HI(x) to approximate f (x)

LFID(x ,VΨ,VΘ) = −f (x)ᵀ log(Θ(HI(x))) (1)

For multi-label classification,

LFID(x ,VΨ,VΘ) =−
∑

f (x)� log(Θ(HI(x)))

+ (1− f (x))� log(1−Θ(HI(x))).
(2)

Design of Interpreter network
Design of Ψ.
• Downsample on the frequency axis, upsample on time axis
• Axis for # of channels should transform to axis of number of

components K .

Design of Θ.
• First pools activations HI(x) across time. Attention–based pooling

(Ilse et al., 2018), z = HI(x)a, where a ∈ RT , z ∈ RK .
• Operate on z with a linear layer to generate the output.

Fidelity loss: To encourage Θ ◦HI(x) to approximate f (x)

LFID(x ,VΨ,VΘ) = −f (x)ᵀ log(Θ(HI(x))) (1)

For multi-label classification,

LFID(x ,VΨ,VΘ) =−
∑

f (x)� log(Θ(HI(x)))

+ (1− f (x))� log(1−Θ(HI(x))).
(2)

NMF dictionary decoder

Additionally constrain HI(x), such that, when fed to a decoder it is able
to reconstruct the input audio.

This decoder is a pre-learnt NMF dictionary, W, learnt via SparseNMF
(Le Roux et al., 2015).

Formally, through LNMF we require HI(x) to approximate log-magnitude
spectrogram of input audio as X ≈WHI(x):

LNMF(x ,VΨ) = ‖X−WHI(x)‖2
2. (3)

The reconstruction loss allows us to consider HI(x) as a time activation
matrix for W.

NMF dictionary decoder

Additionally constrain HI(x), such that, when fed to a decoder it is able
to reconstruct the input audio.

This decoder is a pre-learnt NMF dictionary, W, learnt via SparseNMF
(Le Roux et al., 2015).

Formally, through LNMF we require HI(x) to approximate log-magnitude
spectrogram of input audio as X ≈WHI(x):

LNMF(x ,VΨ) = ‖X−WHI(x)‖2
2. (3)

The reconstruction loss allows us to consider HI(x) as a time activation
matrix for W.

NMF dictionary decoder

Additionally constrain HI(x), such that, when fed to a decoder it is able
to reconstruct the input audio.

This decoder is a pre-learnt NMF dictionary, W, learnt via SparseNMF
(Le Roux et al., 2015).

Formally, through LNMF we require HI(x) to approximate log-magnitude
spectrogram of input audio as X ≈WHI(x):

LNMF(x ,VΨ) = ‖X−WHI(x)‖2
2. (3)

The reconstruction loss allows us to consider HI(x) as a time activation
matrix for W.

Training

Training loss. Additionally `1 regularization on HI(x) is imposed to
encourage sparsity of activations. The complete training loss function:

L(VΨ,VΘ) =
∑
x∈S
LFID(x ,VΨ,VΘ) + αLNMF(x ,VΨ) + β||HI(x)||1 (4)

α, β ≥ 0 are loss hyperparameters.

• Parameters of I constituted in the functions Ψ,Θ and dictionary W
• W is pre-learnt and fixed, thus L is optimized w.r.t VΨ,VΘ.

Interpretation Algorithm
• Step 1: Estimate ”importance” of components rk,c,x = (zkθ

w
c,k)

maxl |zlθw
c,l |

using pooled activations z , weights of linear layer in Θ,

and select
set of important components Lc,x = {k : rk,c,x > τ}.

• Step 2: Extract parts of input signal captured by each relevant
component and invert them back to time-domain

Interpretation Algorithm
• Step 1: Estimate ”importance” of components rk,c,x = (zkθ

w
c,k)

maxl |zlθw
c,l |

using pooled activations z , weights of linear layer in Θ, and select
set of important components Lc,x = {k : rk,c,x > τ}.

• Step 2: Extract parts of input signal captured by each relevant
component and invert them back to time-domain

Interpretation Algorithm
• Step 1: Estimate ”importance” of components rk,c,x = (zkθ

w
c,k)

maxl |zlθw
c,l |

using pooled activations z , weights of linear layer in Θ, and select
set of important components Lc,x = {k : rk,c,x > τ}.

• Step 2: Extract parts of input signal captured by each relevant
component and invert them back to time-domain

Interpretation Algorithm
• Step 1: Estimate ”importance” of components rk,c,x = (zkθ

w
c,k)

maxl |zlθw
c,l |

using pooled activations z , weights of linear layer in Θ, and select
set of important components Lc,x = {k : rk,c,x > τ}.

• Step 2: Extract parts of input signal captured by each relevant
component and invert them back to time-domain

Experiments: Overview
Datasets
• Multi-class classification: Dataset for Environmental Sound

Classification – ESC-50. 50 classes, 2000 samples (5 seconds).

• Multi-label classification: Sounds of New York City – Urban Sound
Tagging – SONYC-UST. 8 classes, 14000+ samples (10 seconds).
Real-world audio with high background noise, weak sources makes it
very challenging.

Network interpreted
• VGG-styled network pre-trained on AudioSet.

• Fine-tuned on each task before being interpreted

Evaluation
• Fidelity: How well the interpreter approximates the classifier

• Faithfulness: Are the features captured by the interpreter truly
important to the classifier’s decision?

• Subjective Evaluation: Understandability of interpretations.

Experiments: Overview
Datasets
• Multi-class classification: Dataset for Environmental Sound

Classification – ESC-50. 50 classes, 2000 samples (5 seconds).

• Multi-label classification: Sounds of New York City – Urban Sound
Tagging – SONYC-UST. 8 classes, 14000+ samples (10 seconds).
Real-world audio with high background noise, weak sources makes it
very challenging.

Network interpreted
• VGG-styled network pre-trained on AudioSet.

• Fine-tuned on each task before being interpreted

Evaluation
• Fidelity: How well the interpreter approximates the classifier

• Faithfulness: Are the features captured by the interpreter truly
important to the classifier’s decision?

• Subjective Evaluation: Understandability of interpretations.

Experiments: Overview
Datasets
• Multi-class classification: Dataset for Environmental Sound

Classification – ESC-50. 50 classes, 2000 samples (5 seconds).

• Multi-label classification: Sounds of New York City – Urban Sound
Tagging – SONYC-UST. 8 classes, 14000+ samples (10 seconds).
Real-world audio with high background noise, weak sources makes it
very challenging.

Network interpreted
• VGG-styled network pre-trained on AudioSet.

• Fine-tuned on each task before being interpreted

Evaluation
• Fidelity: How well the interpreter approximates the classifier

• Faithfulness: Are the features captured by the interpreter truly
important to the classifier’s decision?

• Subjective Evaluation: Understandability of interpretations.

Evaluated Systems for Fidelity

• L2I + Θatt: proposed Listen to Interpret (L2I) system, with
attention based pooling in Θ

• L2I + Θmax: proposed L2I system, with max pooling in Θ

• Baselines: post-hoc methods that approximate the classifier with a
single surrogate model: FLINT & VIBI.

• The baseline methods are themselves not usable for listenable
interpretations, only to quantify fidelity.

ESC-50 Fidelity

Dictionary size K: 100

top-k Fidelity for multi-class: Fraction of samples where the class
predicted by f is among the top-k classes predicted by the interpreter.

Fidelity (in %)

System top-1 top-3 top-5

L2I + Θatt 65.7 ± 2.8 81.8 ± 2.2 88.2 ± 1.7
L2I + Θmax 73.3 ± 2.3 87.8 ± 1.8 92.7 ± 1.2
FLINT 73.5 ± 2.3 89.1 ± 0.4 93.4 ± 0.9
VIBI 27.7 ± 2.3 45.4 ± 2.2 53.0 ± 1.8

Table: Top-k fidelity results on ESC-50 (5 fold mean, std)

SONYC-UST: Fidelity

Dictionary size K: 80

To compute fidelity on multi-label classification tasks, use Area Under
Precision-Recall Curve (AUPRC) based metrics between the classifier
output f (x) and interpreter output Θ(HI(x)).

Fidelity

System macro-AUPRC micro-AUPRC max-F1

L2I + Θatt 0.900 0.914 0.847
L2I + Θmax 0.864 0.912 0.840
FLINT 0.807 0.898 0.811
VIBI 0.608 0.575 0.549

Table: Fidelity results on SONYC-UST

Faithfulness evaluation

• One prior proposed way of computing faithfulness simulate feature
removal from the input −→ Observe change in classifier output.

• Very hard to simulate removal for “concept” based methods.
However, our decomposition structure allows this possibility!

• Given sample x with predicted class c, remove the set of relevant
components Lc,x = {k : rk,c,x > τ} by creating a new signal
x2 = INV(X2,Px), where X2 = X−

∑
l∈Lc,x

Xl . Faithfulness for x :

FFx = f (x)c − f (x2)c (5)

• Not perfect, can lead to unpredictable changes in classifier’s output,
samples with poor fidelity have −ve FFx , thus we report median
over testing data.

• Compare it against Random Baseline: Randomly select same # of
components to remove from the remaining components.

Faithfulness evaluation

• One prior proposed way of computing faithfulness simulate feature
removal from the input −→ Observe change in classifier output.

• Very hard to simulate removal for “concept” based methods.
However, our decomposition structure allows this possibility!

• Given sample x with predicted class c, remove the set of relevant
components Lc,x = {k : rk,c,x > τ} by creating a new signal
x2 = INV(X2,Px), where X2 = X−

∑
l∈Lc,x

Xl . Faithfulness for x :

FFx = f (x)c − f (x2)c (5)

• Not perfect, can lead to unpredictable changes in classifier’s output,
samples with poor fidelity have −ve FFx , thus we report median
over testing data.

• Compare it against Random Baseline: Randomly select same # of
components to remove from the remaining components.

Faithfulness evaluation

• One prior proposed way of computing faithfulness simulate feature
removal from the input −→ Observe change in classifier output.

• Very hard to simulate removal for “concept” based methods.
However, our decomposition structure allows this possibility!

• Given sample x with predicted class c, remove the set of relevant
components Lc,x = {k : rk,c,x > τ} by creating a new signal
x2 = INV(X2,Px), where X2 = X−

∑
l∈Lc,x

Xl . Faithfulness for x :

FFx = f (x)c − f (x2)c (5)

• Not perfect, can lead to unpredictable changes in classifier’s output,
samples with poor fidelity have −ve FFx , thus we report median
over testing data.

• Compare it against Random Baseline: Randomly select same # of
components to remove from the remaining components.

Faithfulness evaluation

• One prior proposed way of computing faithfulness simulate feature
removal from the input −→ Observe change in classifier output.

• Very hard to simulate removal for “concept” based methods.
However, our decomposition structure allows this possibility!

• Given sample x with predicted class c, remove the set of relevant
components Lc,x = {k : rk,c,x > τ} by creating a new signal
x2 = INV(X2,Px), where X2 = X−

∑
l∈Lc,x

Xl . Faithfulness for x :

FFx = f (x)c − f (x2)c (5)

• Not perfect, can lead to unpredictable changes in classifier’s output,
samples with poor fidelity have −ve FFx , thus we report median
over testing data.

• Compare it against Random Baseline: Randomly select same # of
components to remove from the remaining components.

Faithfulness evaluation

• One prior proposed way of computing faithfulness simulate feature
removal from the input −→ Observe change in classifier output.

• Very hard to simulate removal for “concept” based methods.
However, our decomposition structure allows this possibility!

• Given sample x with predicted class c, remove the set of relevant
components Lc,x = {k : rk,c,x > τ} by creating a new signal
x2 = INV(X2,Px), where X2 = X−

∑
l∈Lc,x

Xl . Faithfulness for x :

FFx = f (x)c − f (x2)c (5)

• Not perfect, can lead to unpredictable changes in classifier’s output,
samples with poor fidelity have −ve FFx , thus we report median
over testing data.

• Compare it against Random Baseline: Randomly select same # of
components to remove from the remaining components.

ESC-50 Faithfulness

System Threshold τ FFmedian

L2I + Θatt

τ = 0.9 0.21
τ = 0.7 0.42
τ = 0.5 0.89
τ = 0.3 1.29

Random Baseline τ = 0.3 0.00

Table: Faithfulness results (absolute drop in logit value) on ESC-50.

SONYC-UST: Faithfulness

Figure: Faithfulness (absolute drop in probability value) results for
SONYC-UST arranged class-wise for threshold, τ = 0.1

Subjective Evaluation
• User study (15 participants) to evaluate quality & understandability

of L2I interpretations on SONYC-UST. Compared against SLIME.

• Participants provided with following information for 10 samples:
Input audio
Predicted class of classifier
Interpretation audio from L2I and SLIME

• Rate both interpretations (scale 0-100) for the following question:
“How well does the interpretation correspond to the part of input
audio associated with the given class?”

Figure: Class-wise average scores for L2I, SLIME and fraction of votes in
favour of each system

Subjective Evaluation
• User study (15 participants) to evaluate quality & understandability

of L2I interpretations on SONYC-UST. Compared against SLIME.
• Participants provided with following information for 10 samples:

Input audio
Predicted class of classifier
Interpretation audio from L2I and SLIME

• Rate both interpretations (scale 0-100) for the following question:
“How well does the interpretation correspond to the part of input
audio associated with the given class?”

Figure: Class-wise average scores for L2I, SLIME and fraction of votes in
favour of each system

Subjective Evaluation
• User study (15 participants) to evaluate quality & understandability

of L2I interpretations on SONYC-UST. Compared against SLIME.
• Participants provided with following information for 10 samples:

Input audio
Predicted class of classifier
Interpretation audio from L2I and SLIME

• Rate both interpretations (scale 0-100) for the following question:
“How well does the interpretation correspond to the part of input
audio associated with the given class?”

Figure: Class-wise average scores for L2I, SLIME and fraction of votes in
favour of each system

Subjective Evaluation
• User study (15 participants) to evaluate quality & understandability

of L2I interpretations on SONYC-UST. Compared against SLIME.
• Participants provided with following information for 10 samples:

Input audio
Predicted class of classifier
Interpretation audio from L2I and SLIME

• Rate both interpretations (scale 0-100) for the following question:
“How well does the interpretation correspond to the part of input
audio associated with the given class?”

Figure: Class-wise average scores for L2I, SLIME and fraction of votes in
favour of each system

Qualitative results

https://listen2interpret.000webhostapp.com/

https://listen2interpret.000webhostapp.com/

Conclusions

• In summary, presented a post-hoc interpretability system for
networks that process audio

• Using high-level audio objects for listenable interpretations

• Novel usage of NMF to link with deep neural network
representations, specially for interpretations

• Real-world multi-label dataset tackled, first of its kind faithfulness
evaluation

The End

THANK YOU!
Paper available on arxiv (arXiv:2202.11479)

