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Motivations - Context

 Functional Data: data

depending on continuous
variable, especially time
and space.

Ñ Data in many fields
increasingly come to us
with functional structure.

+ Extremes: Data "large" in some sense.
Main issues:

 infinite dimension (or at least high dimension in pratice);

 representation of functional extremes;

 how to work with only a few data?

Goal: developing functional extreme theory in order to elaborate
practical methods to handle functional issues.
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Context


 Object: X a zero-mean and second order random process with
sample-path in L2pr0, 1sq, i.e. the space of functions f over
r0, 1s such that }f }2 :� p³1

0 |f ptq|2dtq1{2   8.

ñ Dependence structure monitored by covariance function
Cps, tq � EpX psqX ptqq and, a fortiori, by covariance operator
TC pf qpsq �

³1
0 Cps, tqf ptqdt.

ñ Classical tool to study that type of object: Karhunen-Loève
Expansion (KLE).
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Karhunen-Loève Expansion

KLE: allows to reduce dimension of data by selecting directions
where the information is the more spread, i.e. where the variance is
the highest. Ñ analogous to principal components analysis in finite
dimension.

Figure: Illustration of
PCA in 2D

Applications: compression, denoising, signal estimation...
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Karhunen-Loève Expansion
Mathematical definition

KLE of X is given by:
X �

8̧

i�1
Ziϕi

where Zi � xX , ϕiy and ϕi are eigenfunctions of TC forming a
Hilbert basis of L2pr0, 1sq.
ñ KLE decomposes X into bi-orthogonal expansion

 Zi ’s are decorrelated: EpZiZjq � 0 if i � j ;

 ϕi ’s are orthogonal: xϕi , ϕjy � 0 if i � j .

Main advantages:

 best linear approximation at given dimension;

 reduces overfitting.
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Karhunen-Loève Expansion
Best linear approximation?


 Reconstruction error: RpV q � E}X � ΠV X}2
2

Ñ empirical version: R̂pV q � 1
n
°n

i�1 }Xi � ΠV Xi}2
2;

ñ KLE is the best linear approximation at given dimension N in
the sense that

min
V ,dimpV q�N

RpV q

is achieved for V � spantϕ1, ..., ϕNu, i.e. ΠV X � °N
i�1 Ziϕi .

Powerful tool but how to extend it to extremal framework?
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Multivariate Extreme Value Theory
see [3, Resnick, 1987]

Extreme Value Theory (EVT): study
of large data, i.e. which exceed a high
threshold.
Ñ modeling rare events and risk
monitoring (in hydrology or insurance for
instance).

Regular variation (RV) of X (:= classical hypothesis in EVT) :�
the law of rescaled data given an excess of a high threshold has a
limit µ, called exponent measure:

PpX{t P A |}X} ¥ tq ÝÑ
tÑ8

µpA q

Property of µ: µptA q � t�αµpA q
ñ suggests considering a limiting angular variable Θ8, such that

Pp}X} ¥ tx , X{}X} P �q
Pp}X} ¥ tq

vÝÑ x�αPpΘ8 P �q.
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Regular Variation
Illustration

Figure: Plot of Regularly Varying Random Variable in 2D.

ñ Θ8 characterizes the dependence structure in extremes.

What about EVT in the functional case?
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Functional Regular Variation

ùñ same characterization than multivariate RV but weak
convergence and measure are less tractable and mentally
representable.
Main difference with multivariate case: several representations for
functional extremes are possible, including

 high value at one point, measured with suptPT |xptq|;

 high energy over a catchment T , measured with

³
T xptq2dt;


 large total amount over a catchment T , measured with³
T xptqdt.

Our focus: data with high energies.

Our goal: characterizing functional extremes and obtain a suitable
representation of finite dimension for limiting measure.
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Karhunen-Loève Expansion of Extremes
The limit of KLE is KLE of the limit


 Working Assumption: X is regularly varying with tail
process Θ8 which belongs on a finite-dimensional space of
dimension p, noted V8.


 Goals: characterization of behavior of KLE of largest
functional data and estimation of KLE of V8.


 working on Θt the normalized thresholded process such that
L pΘtq :� L

�
X
}X}

���}X} ¥ t
	

to avoid moment issues
with V p

t � p-dimensional space given by KLE on Θt .

Theorem(Limit behavior of thresholded spaces)[HUET2022]

ρpV p
t , V8q ÝÑtÑ8

0

where ρpA, Bq :� }ΠA � ΠB}op is a distance between spaces.
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Karhunen-Loève Expansion of Extremes
Statistical guarantees to recover KLE of the limit


 Second step: estimating V8 thanks to a sample pX1, ..., Xnq
of independent observations following the same distribution as
X .

ñ V̂ p
t̂n,k

= p-dimensional space given by KLE on pX1, ..., Xnq
(using only the k larger data);

ñ estimator of V p
tn,k only with known quantities.

Theorem(Convergence rate and consistency)[HUET2022]

ρpV̂ p
t̂n,k

, V p
tn,k q ¤

Ck?
k
� o

� 1?
k

	

with large probability and where Ck ÝÑ
kÑ�8

C P R.

ñ extension to infinite dimension of [1, Sabourin and Drees, 2021].
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Recovering extremal signals with small distortion
Plot of the data

Figure: Plot of simulated data
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Recovering extremal signals with small distortion
Settings

Simulation of n � 10.000 curves such that
Xi �

°
jPI1 Yijej �

°
jPI2 Wijei with


 Yij
i .i .d .� Paretop3q (regularly varying coordinates);


 Wij
i .i .d .� N p0, 3{4q (non-regularly varying coordinates);


 tejuj¥1 Fourier basis;

 I1 � t1, 6, 10u and I2 � t2, 3, 4, 5, 7, 8, 9, 11u (arbitrary

partition of t1, ..., 11u.
ñ VarpYijq � VarpWijq,@i .
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Recovering extremal signals with small distortion
First KL analysis performed on normalized data

Figure: Mean empirical reconstruction error for PCA, performed on angle
of the process without any thresholding, projecting on subspace of
dimension 1 ¤ s ¤ 11 versus dimension s.
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Recovering extremal signals with small distortion
Plot of thresholded data

Only the k � 200 largest curves (w.r.t. } � }2) remain.

Figure: Plot of the k largest curves.
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Recovering extremal signals with small distortion
Second KL analysis performed on normalized and thresholded data

Figure: Mean empirical
reconstruction errors for PCA,
performed on angle of the
thresholded process, projecting on
subspace of dimension 1 ¤ s ¤ 11
versus k.

Figure: Mean empirical
reconstruction errors for PCA,
performed on angle of the
thresholded process, projecting on
subspace of dimension 1 ¤ s ¤ 11
versus k.
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On going/Remaining Work


 Apply those results to real datasets with in particular
functional anomaly detection (as in [2, Goix et al., 2017]);


 Obtain other functional representations by considering
different basis (wavelets...);


 Develop in detail Hilbertian regular variation theory.
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Thanks for your attention !
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