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Karhunen-Loéve Expansion for
Functional Extremes
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Motivations - Context

* Functional Data: data
depending on continuous
variable, especially time
and space.
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— Data in many fields
increasingly come to us
201 with functional structure.

+ Extremes: Data "large" in some sense.
Main issues:
* infinite dimension (or at least high dimension in pratice);
¢ representation of functional extremes;
¢ how to work with only a few data?

Goal: developing functional extreme theory in order to elaborate
practical methods to handle functional issues.



Context

® Object: X a zero-mean and second order random process with
sample-path in L2([0,1]), i.e. the space of functions f over
[0,1] such that |[f]2 := (§g |F(£)[2dt)/? < 0.

= Dependence structure monitored by covariance function
C(s t) E(X(S)X(t)) and, a fortiori, by covariance operator

= {3 Cls,F (1)

= Classical tool to study that type of object: Karhunen-Loéve
Expansion (KLE).




Karhunen-Loéve Expansion

KLE: allows to reduce dimension of data by selecting directions
where the information is the more spread, i.e. where the variance is
the highest. — analogous to principal components analysis in finite
dimension.
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Applications: compression, denoising, signal estimation...



Karhunen-Loéve Expansion

Mathematical definition

KLE of X is given by: 0o
X =2, Zidi

i=1
where Z; = (X, ¢;) and ¢; are eigenfunctions of T¢ forming a
Hilbert basis of L2([0,1]).

= KLE decomposes X into bi-orthogonal expansion
* Z;'s are decorrelated: E(Z;Z;) = 0 if i # j;
* ¢;'s are orthogonal: {(¢;,¢;y = 0 if i # j.

Main advantages:

¢ best linear approximation at given dimension;

¢ reduces overfitting.



Karhunen-Loéve Expansion

Best linear approximation?

* Reconstruction error: R(V) = E|X — My X|3
— empirical version: R(V) =137 |X; — Ny X;

“n

|2.
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= KLE is the best linear approximation at given dimension N in
the sense that

min ~ R(V)
V,dim(V)=N

is achieved for V = span{¢, ..., on}, ie. My X = SN Zih;.

Powerful tool but how to extend it to extremal framework?



Multivariate Extreme Value Theory

see [3, Resnick, 1987]
m— xtreme Value Theory (EVT): study

of large data, i.e. which exceed a high
7 threshold
Tde — modeling rare events and risk
MM mm J ., monitoring (in hydrology or insurance for
I instance).

Regular variation (RV) of X (:= classical hypothesis in EVT) :=
the law of rescaled data given an excess of a high threshold has a
limit u, called exponent measure:

P(X/te F|X]| = t) — p()

Property of pu: p(te/) = t=*u(</)
= suggests considering a limiting angular variable ©, such that
POXI = o, X/ Xl €-) v

PX] = 1)

XiaP(@OO € ').



Regular Variation

Illustration
Angular component
« Extremal Data
s Normal Data
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Figure: Plot of Regularly Varying Random Variable in 2D.
= Oy characterizes the dependence structure in extremes.

What about EVT in the functional case?



Functional Regular Variation

== same characterization than multivariate RV but weak
convergence and measure are less tractable and mentally
representable.

Main difference with multivariate case: several representations for
functional extremes are possible, including

* high value at one point, measured with sup,c7 |x(t)|;
¢ high energy over a catchment T, measured with STX(t)2dt;

® |arge total amount over a catchment T, measured with
§+x(t)dt.

Our focus: data with high energies.

Our goal: characterizing functional extremes and obtain a suitable
representation of finite dimension for limiting measure.



Karhunen-Loeve Expansion of Extremes
The limit of KLE is KLE of the limit
¢ Working Assumption: X is regularly varying with tail
process ©, which belongs on a finite-dimensional space of
dimension p, noted V.

® Goals: characterization of behavior of KLE of largest
functional data and estimation of KLE of V.

¢ working on ©; the normalized thresholded process such that
Z(0) := X(ﬁ‘ﬂXH > t) to avoid moment issues
with V' = p-dimensional space given by KLE on ©;.

Theorem(Limit behavior of thresholded spaces)[HUET2022]

p(\/,_.p, VOO) — 0

t—o0

where p(A, B) := |4 — MNp|op is a distance between spaces.




Karhunen-Loeve Expansion of Extremes

Statistical guarantees to recover KLE of the limit

* Second step: estimating V, thanks to a sample (Xi, ..., X,)
of independent observations following the same distribution as
X.

= \7 = p-dimensional space given by KLE on (X1, ..., Xj)
(usmg only the k larger data);
= estimator of Vtﬁk only with known quantities.

p
Theorem( Convergence rate and consistency)[HUET2022]

~ Ck 1
p(V%pn’k, Vtﬁyk) < ﬁ + 0<ﬁ)

with large probability and where ¢, — C e R.
k—+00
\ J

= extension to infinite dimension of [1, Sabourin and Drees, 2021].



Recovering extremal signals with small distortion
Plot of the data
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Figure: Plot of simulated data



Recovering extremal signals with small distortion
Settings

Simulation of n = 10.000 curves such that
Xi = 2jen, Yiei + 2je, Wijei with
* Y i Pareto(3) (regularly varying coordinates);
e W L A4(0,3/4) (non-regularly varying coordinates);
* {ej}j>1 Fourier basis;
* /1 ={1,6,10} and /, = {2,3,4,5,7,8,9,11} (arbitrary
partition of {1,...,11}.
= Var(Yj;) = Var(Wj), Vi.



Recovering extremal signals with small distortion

First KL analysis performed on normalized data

Figure: Mean empirical reconstruction error for PCA, performed on angle
of the process without any thresholding, projecting on subspace of
dimension 1 < s < 11 versus dimension s.



Recovering extremal signals with small distortion
Plot of thresholded data
Only the k = 200 largest curves (w.r.t. | -||2) remain.
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Figure: Plot of the k largest curves.



Recovering extremal signals with small distortion

Second KL analysis performed on normalized and thresholded data

Figure: Mean empirical
reconstruction errors for PCA,
performed on angle of the
thresholded process, projecting on
subspace of dimension 1 <s < 11
versus k.

Figure: Mean empirical
reconstruction errors for PCA,
performed on angle of the
thresholded process, projecting on
subspace of dimension 1 < s <11
versus k.



On going/Remaining Work

¢ Apply those results to real datasets with in particular
functional anomaly detection (as in [2, Goix et al., 2017]);

® Obtain other functional representations by considering
different basis (wavelets...);

¢ Develop in detail Hilbertian regular variation theory.



Thanks for your attention !
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