Axe 2 : Exploiting large scale, heterogeneous, partially labeled data

Jayneel Parekh (PhD, funded by the chair): Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF

Abstract: This paper tackles post-hoc interpretability for audio processing networks. Our goal is to interpret decisions of a network in terms of high-level audio objects that are also listenable for the end-user. To this end, we propose a novel interpreter design that incorporates non-negative matrix factorization (NMF). In particular, a carefully regularized interpreter module is trained to take hidden layer representations of the targeted network as input and produce time activations of pre-learnt NMF components as intermediate outputs. Our methodology allows us to generate intuitive audio-based interpretations that explicitly enhance parts of the input signal most relevant for a network’s decision. We demonstrate our method’s applicability on popular benchmarks, including a real-world multi-label classification task.

See the presentation

Anass Aghbalou (PhD, funded by the chair): Cross validation for rare events

Abstract: This paper tackles post-hoc interpretability for audio processing networks. Our goal is to interpret decisions of a network in terms of high-level audio objects that are also listenable for the end-user. To this end, we propose a novel interpreter design that incorporates non-negative matrix factorization (NMF). In particular, a carefully regularized interpreter module is trained to take hidden layer representations of the targeted network as input and produce time activations of pre-learnt NMF components as intermediate outputs. Our methodology allows us to generate intuitive audio-based interpretations that explicitly enhance parts of the input signal most relevant for a network’s decision. We demonstrate our method’s applicability on popular benchmarks, including a real-world multi-label classification task.

See the presentation

Luc Brogat-Motte (PhD, funded by ANR APi): Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters (ICML paper)

Abstract: This paper introduces a novel and generic framework to solve the flagship task of supervised labeled graph prediction by leveraging Optimal Transport tools. We formulate the problem as regression with the Fused Gromov-Wasserstein (FGW) loss and propose a predictive model relying on a FGW barycenter whose weights depend on inputs. First we introduce a non-parametric estimator based on kernel ridge regression for which theoretical results such as consistency and excess risk bound are proved. Next we propose an interpretable parametric model where the barycenter weights are modeled with a neural network and the graphs on which the FGW barycenter is calculated are additionally learned. Numerical experiments show the strength of the method and its ability to interpolate in the labeled graph space on simulated data and on a difficult metabolic identification problem where it can reach very good performance with very little engineering.
Keywords: Kernel Methods, Graph Theory, Graph Prediction, Gromov-Wasserstein distance

See the presentation